

Unexpected Cleverness in Unicellular Organisms: The Slime Mold Case

Marcello Caleffi

Broadband Wireless Networking Lab Georgia Institute of Technology

Department of Biomedical, Electronics and Telecommunications Engineering University of Naples Federico II

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

WHAT ARE WE TALKING ABOUT?

A. Tero, S. Takagi, T. Saigusa, and others, "Rules for biologically inspired adaptive network design", Science, vol. 327, issue 5964, p. 439, 2010. Barcelona, July 19th 2011

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

PHYSARUM POLYCEPHALUM

Large multinucleated unicellular amoeboid organism

- mobile and no chitin, unlike fungi
- no chlorophyll, unlike plants
- large, unlike bacteria Different forms:
 - spore stage
 - amoeba stage
 - plasmodium stage (active)
 - sclerotium stage (dormant)

Marcello Caleffi

Barcelona, July 19th 2011

PLASMODIUM STAGE: SHEET-LIKE FORM

contiguous foraging margin

 to maximize the searched area for feeding

tubular network

Marcello Caleffi

- for transporting nutrients and physical/chemical signals
- formed by hydrostatic pressure of flowing protoplasm (1 mm/s) due to rhythmic contractions

T. Nakagaki, H. Yamada, M. Hara, "Smart network solutions in an amoeboid organism", Elsevier Biophysical Chemistry, vol. 107, issue 1, pp. 1-5, 2005\ Barcelona, July 19th 2011

PLASMODIUM STAGE: FEEDING FORM

efficiency

- food sources are connected with direct connections
- intermediate junctions
 (Steiner points) reduce the overall network length

reliability

Marcello Caleffi

 occasional cross-links that improve overall transport resilience

T. Nakagaki, H. Yamada, M. Hara, "Smart network solutions in an amoeboid organism", Elsevier Biophysical Chemistry, vol. 107, issue 1, pp. 1-5, 2005. Barcelona, July 19th 2011

PLASMODIUM STAGE: FEEDING FORM

efficiency

- food sources are connected with direct connections
- intermediate junctions
 (Steiner points) reduce the overall network length

reliability

 occasional cross-links that improve overall transport resilience

T. Nakagaki, H. Yamada, M. Hara, "Smart network solutions in an amoeboid organism", Elsevier Biophysical Chemistry, vol. 107, issue 1, pp. 1-5, 2005 Barcelona, July 19th 2011

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

Marcello Caleffi

PHYSARUM CLEVERNESS

Physarum has been applied to:

- Maze-solving The Physarum is able to navigate a maze using the shortest route.

T. Nakagaki, H. Yamada, A. Toth, "Intelligence: Maze-solving by an amoeboid organism", Nature, vol. 407, issue 6803, p. 470, 2000.
Barcelona, July 19th 2011

Physarum has been applied to:

- Maze-solving
- Network Design
 - The Physarum can form a network with efficiency/ resilience comparable or better than those of existing rail networks.

A. Tero, S. Takagi, T. Saigusa, and others, "Rules for biologically inspired adaptive network design", Science, vol. 327, issue 5964, p. 439, 2010. Barcelona, July 19th 2011

Physarum has been applied to:

- Maze-solving
- Network Design
- Event Anticipation The Physarum can anticipate a 1 hour cold-dry pattern previously applied.

T. Saigusa, A. Tero, T. Nakagaki, Y. Kuramoto, "Amoebae anticipate periodic events", APS Physical Review Letters, vol. 100, issue 1, p. 18101, 2008. Barcelona, July 19th 2011 _____12

Physarum has been applied to:

- Maze-solving
- Network Design
- Event Anticipation
- Computing

Marcello Caleffi

The Physarum can be used to form logical gates.

A. Adamatzky, "Slime mould logical gates: exploring ballistic approach", Arxiv preprint arXiv:1005.2301, 2010.

Physarum has been applied to:

- Maze-solving
- Network Design
- Event Anticipation
- Computing

Marcello Caleffi

The Physarum can be used to control a robot.

J. Gough, G. Jones, G. and others, "Integration of Cellular Biological Structures Into Robotic Systems", European Space Agency Acta Futura, vol. 3, pp. 43-49, 2009. Barcelona, July 19th 2011 ______14

Is this cleverness really unexpected? biological organisms

- successive rounds of evolutionary selection
- cost, efficiency, and resilience of their communication/ computation tasks are appropriately balanced

Physarum Polycephalum's tasks:

- movement for food discovering
- <u>nutrients and physical/chemical signals transport</u>

Barcelona, July 19th 2011

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

Marcello Caleffi

PHYSARUM MODEL

Physiological Aspects

- tube dynamic is controlled by flux (protoplasm hydrostatic pressure)
- flux is generated by rhythmic contractions
- contractions are out of phase when food is available

Simple empirical rules

- open-ended tubes (not connected to food) tend to disappear
- Ionger tubes tend to disappear
- hydrostatic equilibrium

A. Tero, R. Kobayashi, T. Nakagaki, "A mathematical model for adaptive transport network in path finding by true slime mold", Journal of Theoretical Biology, vol. 244, issue 4, pp. 553-564, 2007 Barcelona, July 19th 2011

Mathematical Model

$$\begin{split} Q_{ij}(t) &= \frac{D_{ij}(t)}{L_{ij}}(p_i(t) - p_j(t)) \\ \sum_i Q_{ij}(t) &= \begin{cases} -I & \text{if } j = source \\ I & \text{if } j = destination \\ 0 & \text{if } j \neq source, destination} \end{cases} \\ \frac{dD_{ij}(t)}{dt} &= f(Q_{ij}(t)) - D_{ij}(t) \end{split}$$

T. Miyaji, I. Ohnishi, "Physarum can solve the shortest path problem on riemannian surface mathematically rigourously", International Journal of Pure and Applied Mathematics, vol. 47, issue 3, pp. 353-369, 2008.

K. Ito, A. Johansson, and others, "Convergence Properties for the Physarum Solver", Arxiv preprint arXiv: 1101.5249, 2011.

Marcello Caleffi

Mathematical Model

$$\begin{split} Q_{ij}(t) &= \frac{D_{ij}(t)}{L_{ij}} (p_i(t) - p_j(t)) \\ \sum_i Q_{ij}(t) &= \begin{cases} -I & \text{if } j = source \\ I & \text{if } j = destination \\ 0 & \text{if } j \neq source, destination} \end{cases} \\ \frac{dD_{ij}(t)}{dt} &= f(Q_{ij}(t)) - D_{ij}(t) \end{split}$$

The model

- assures the optimal solution for the shortest path problem
- converges with an exponential rate to the optimal solution of a flow problem

Marcello Caleffi

Barcelona, July 19th 2011

Applications of the model

- Maze Navigation
- Road Navigation
- Flow Network Adaption
- Graph Theory

Applications of the model

- Maze Navigation

Barcelona, July 19th 2011

A. Tero, R. Kobayashi, T. Nakagaki, "A mathematical model for adaptive transport network in path finding by true slime mold", Journal of Theoretical Biology, vol. 244, issue 4, pp. 553-564, 2007.

Marcello Caleffi

Applications of the model

- Road Navigation

K. Ito, A. Johansson, and others, "Convergence Properties for the Physarum Solver", Arxiv preprint arXiv: 1101.5249, 2011.

Applications of the model

- Flow Network Adaptation

A. Tero, K. Yumiki, and others, "Flow-network adaptation in Physarum amoebae", Springer Theory in Biosciences, vol. 127, issue 2, pp. 89-94, 2008.

Barcelona, July 19th 2011

Applications of the model

- Graph Theory (Steiner minimum trees)

T. Nakagaki, R. Kobayashi, R. and others, "Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium", in Proc. of the Royal Society of London, vol. 271, issue 1554, p. 2305, 2004.

Marcello Caleffi

Physarum-Inspired Networking Physarum-Driven Networking Physarum-Driven Molecular Communications

Marcello Caleffi

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

$$\begin{split} Q_{ij}(t) &= \frac{D_{ij}(t)}{L_{ij}}(p_i(t) - p_j(t)) \\ \sum_i Q_{ij}(t) &= \begin{cases} -I & \text{if } j = source \\ I & \text{if } j = destination \\ 0 & \text{if } j \neq source, destination \end{cases} \\ \frac{dD_{ij}(t)}{dt} &= f(Q_{ij}(t)) - D_{ij}(t) \end{split}$$

Advantages

- simple model
- effective network representation
- adaptive (through reinforce)
- can find
 efficient solutions
 resilience solutions
 hybrid solutions

Marcello Caleffi

Advantages

- simple model
- effective network representation
- adaptive (through reinforce)
- can find
 - efficient solutions
 - resilience solutions
 - hybrid solutions

Marcello Caleffi

$$\begin{split} Q_{ij}(t) &= \frac{D_{ij}(t)}{L_{ij}}(p_i(t) - p_j(t)) \\ \sum_i Q_{ij}(t) &= \begin{cases} -I & \text{if } j = source \\ I & \text{if } j = destination \\ 0 & \text{if } j \neq source, destination \\ \frac{dD_{ij}(t)}{dt} &= f(Q_{ij}(t)) - D_{ij}(t) \end{split}$$

Applications

- network design
- routingpath discovery
- QoS optimization problems
- graph theoryNP-hard problems

Marcello Caleffi

$$\begin{split} Q_{ij}(t) &= \frac{D_{ij}(t)}{L_{ij}}(p_i(t) - p_j(t)) \\ \sum_i Q_{ij}(t) &= \begin{cases} -I & \text{if } j = source \\ I & \text{if } j = destination \\ 0 & \text{if } j \neq source, destination} \end{cases} \\ \frac{dD_{ij}(t)}{dt} &= f(Q_{ij}(t)) - D_{ij}(t) \end{split}$$

Drawbacks

- convergence time
- global knowledge
 - can be avoided, but with larger convergence times
- solutions depending on the initial data
- oscillation effects?

Marcello Caleffi

Barcelona, July 19th 2011

Research Challenges

- accurate equilibrium analysis
 - we can benefit from an adaptive behavior
 - but we cannot have chaotic evolution
- dynamic network
 - mobility issues
 - scalability issues

Research Challenges

- cross-layer design
 - physical layer?

continuous flows vs "impulsive" communications

mac layer?

point-to-point flows vs broadcast communications

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

The biological culture models the overlay network

- changes in the underlying network trigger feedbacks in the biological culture
- the culture drives the behavior of virtual overlay

S. Balasubramaniam, K. Leibnitz, and others, "Biological principles for future internet architecture design," IEEE Communications Magazine, vol.49, issue 7, pp.44-52, 2011. Barcelona, July 19th 2011

Centralized Design:

the biological culture models the whole network

- the stimuli must be collected from the whole underlying network
 communication bottleneck
- the underlying network connections must be mapped in the culture
 biological bottleneck

Marcello Caleffi

<u>Our Proposal</u>: Distributed Design based on the Physarum:

- Physarum cells are used to model nodes
- the stimuli are local
 - communication scalability
- the underlying network neighborhood is mapped on the cell
 - biological scalability

Centralized Design:

the biological culture models the whole network

- the stimuli must be collected from the whole underlying network
 communication bottleneck
- the underlying network connections must be mapped on the culture
 biological bottleneck

Barcelona, July 19th 2011

<u>Our Proposal</u>: Distributed Design based on the Physarum:

- Physarum cells are used to model nodes
- the stimuli are local
 - communication scalability
- the underlying network neighborhood is mapped in the cell
 - biological scalability

Marcello Caleffi

<u>Our Proposal</u>: Stimuli

- variation of food
- protoplasm flow
- environmental conditions
- Underlying link
- mapped on food presence
 mapped on flow/oscillation
 Biological Feedback
 Tubular network

Marcello Caleffi

Drawbacks

- plasmodium initialization
- convergence time
- unpredictable behavior
- foraging/mortality

Marcello Caleffi

Research Challenges

- biointerface design
 - stimuli
 - information encoding
 - broadcast channels
- biological feedback
 - how to map it on the underlying network

OUTLINE

- Physarum Polycephalum
- Physarum Cleverness
- Physarum Model
- Physarum-Inspired Networking
- Physarum-Driven Networking
- Physarum-Driven Molecular Communications

PHYSARUM-DRIVEN MOLECULAR COMMUNICATIONS

Problem duality

Physarum networking vs Molecular Nanonetworks

- Broadcast Messages
- Multi-attractant Receivers for Longer Distance
- Network deployment: Address assignment Neighbor discovery Multi-hop path creation.

I. F. Akyildiz, F. Brunetti, and C. Blazquez, "Nanonetworks: A New Communication Paradigm," Elsevier Computer Networks, vol. 52, issue 12, pp. 2260-2279, 2008. Barcelona, July 19th 2011 42

PHYSARUM-DRIVEN MOLECULAR COMMUNICATIONS

<u>Our Proposal:</u>

Physarum-Driven Molecular Nanonetworks

> Carriers for long-range molecular communications

- Range 1µm-1m
- Speed 1mm/s
- Reliable

Marcello Caleffi

PHYSARUM-DRIVEN MOLECULAR COMMUNICATIONS

Research Challenges

Physarum-Driven Networking Challenges

+

Molecular Communications Challenges

Marcello Caleffi