

NaNoNetworking Center in Catalunya (N3Cat)

Graphene-enabled Wireless Communications

About N3Cat
Research interests
N3Cat in CATGRAPHNET

Ignacio Llatser, Albert Cabellos & Josep Solé-Pareta

{llatser, acabello, pareta}@ac.upc.edu

About N3Cat

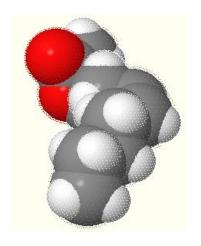
The initiative

- Nanotechnology is enabling the development of devices in a scale ranging from one to a few hundred nanometers, which are able to perform simple tasks such as computing, data storing, sensing and actuation
- By means of communication, these nano-devices will be able to achieve more complex tasks and cover larger areas
- However, classical communication paradigms need to be revised/rethought before being used in the nanoscale
- The NaNoNetworking Center in Catalonia (N3Cat) has been created with the main goals of carrying fundamental research on communications among nano-devices, and educating and training the new generation of students in this field

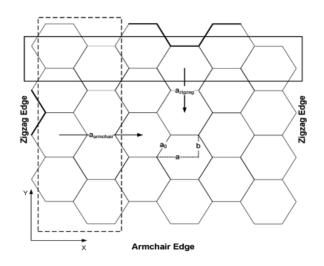
About N3Cat

Director: Prof. Ian F. Akyildiz

Academic staffs: 6 Students: 8 - 10


- Current members
 - Broadband Wireless Networking Lab. (GeorgiaTech)
 - Ian F. Akyildiz (Honorary Professor with the UPC and Director of N3Cat)
 - Computer Architecture Dept. (UPC)
 - Josep Solé-Pareta and Albert Cabellos-Aparicio
 - Electronic Engineering Dept. (UPC)
 - Eduard Alarcón-Cot and Ramon Bragós
 - Electrical & Electronics Engineering Dept. (Koç University)
 - Özgür B. Akan

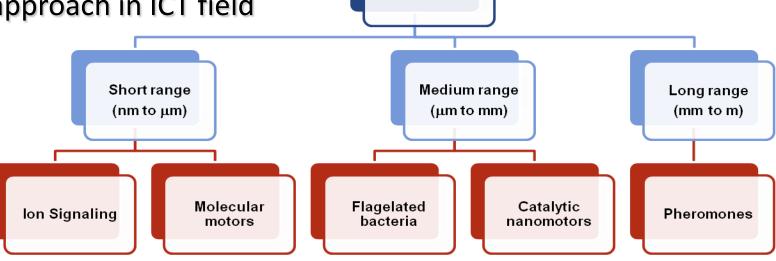
Key research topics


Molecular Communications

 Use biological elements as blocks or design patterns (Information encoded inside molecules)

Graphene-enabled Wireless Communications

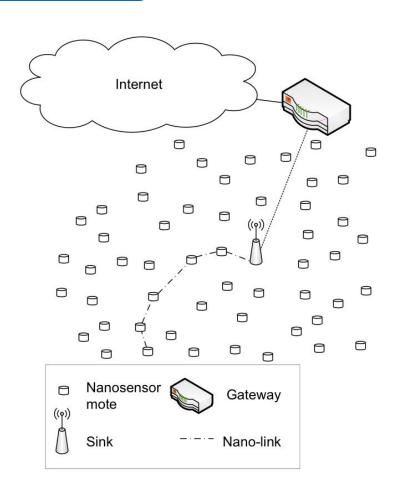
 EM based communications at the nano scale



Research interests

Molecular Communications

- Very efficient power consumption
- Bio-compatibility
- Already existing elements
- New approach in ICT field


Molecular communication

Research interests

Graphene-enabled Wireless Communications

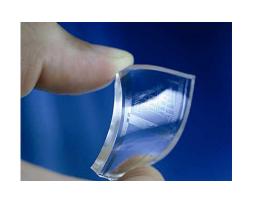
- Wireless Nanosensor Networks
- Wireless Networks-on-Chip
- etc.

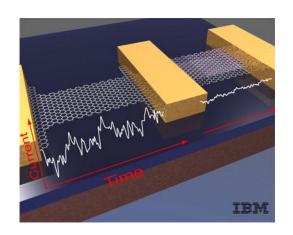
Research interests

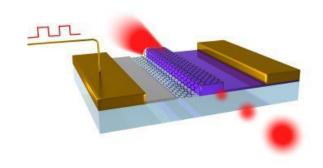
- Common problems:
 - Channel modeling
 - Scalability
 - Nano-network architectures
 - Performance evaluation by simulation
- In progress activity
 - http://www.n3cat.upc.edu/

Potential applications of graphene

Composites

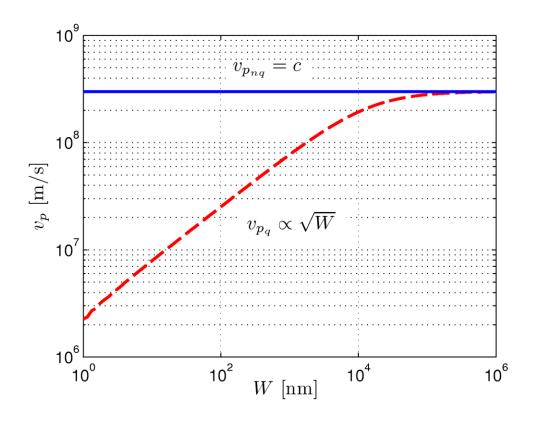

Chemistry




Nano-optics

Nano-electronics

Bio-medicine ¿Wireless communications?


- Graphene-based nano-patch antennas show novel properties, different from metallic antennas
- These quantum effects are envisaged to enable wireless communications at the nanoscale

Josep Miquel Jornet, Ian F. Akyildiz, "Graphene-Based Nano-Antennas for Electromagnetic Nanocommunications in the Terahertz Band", *Proc. European Conference on Antennas and Propagation*, Barcelona, 2010.

 EM waves propagating in graphene-based nano-antennas have a lower propagation speed than in metallic antennas

$$v_p = \frac{1}{\sqrt{LC}}$$

 v_p : wave propagation speed

c: speed of light

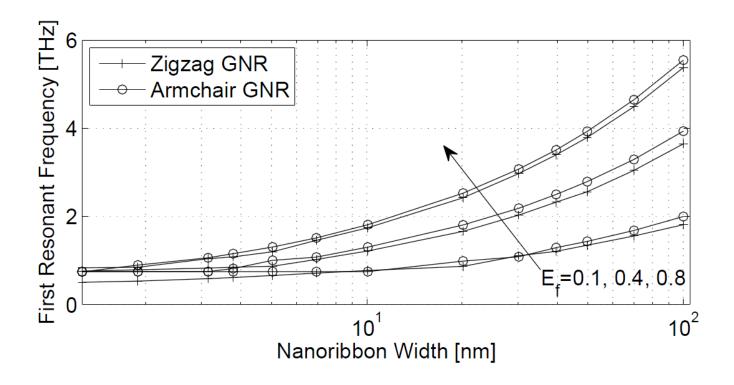
W: antenna width

L: distributed inductance

C: distributed capacitance

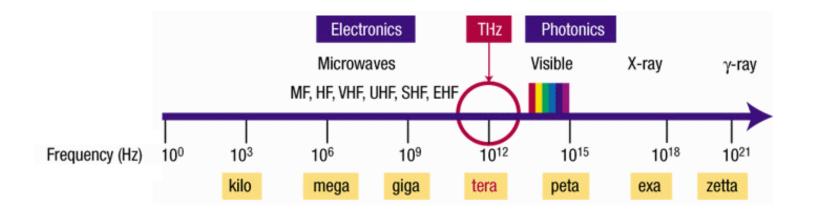
- Why do we need a low propagation speed?
 - Let's consider a 1 μm-long nano-antenna
 - Metallic antenna

$$v_p \approx 2.10^8 \,\text{m/s}$$
 \longrightarrow $f = \frac{v_p}{2l} \approx 100 \,\text{THz}$ \longrightarrow optical domain


Graphene-based antenna

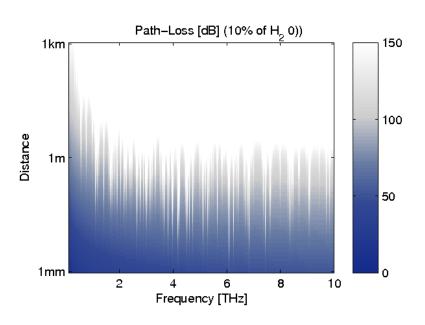
$$v_p \approx 2.10^6 \,\mathrm{m/s}$$
 \longrightarrow $f = \frac{v_p}{2l} \approx 1 \,\mathrm{THz}$ \longrightarrow electromagnetic domain THz band

 v_p : wave propagation speed f: antenna resonant frequency f: antenna length

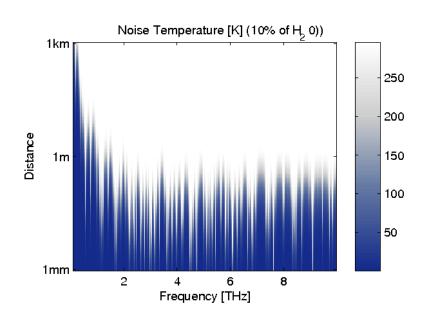

 First resonant frequency of a graphene-based nano-patch antenna as a function of the nanoribbon width

Josep Miquel Jornet, Ian F. Akyildiz, "Graphene-Based Nano-Antennas for Electromagnetic Nanocommunications in the Terahertz Band", *Proc. European Conference on Antennas and Propagation*, Barcelona, 2010.

 Graphene-based nano-antennas radiate EM waves in the terahertz band



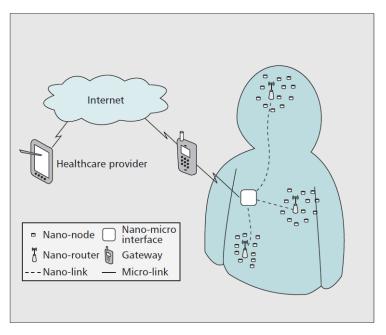
- We need to study the properties of the terahertz channel at the nanoscale
 - Path loss
 - Noise


Terahertz channel

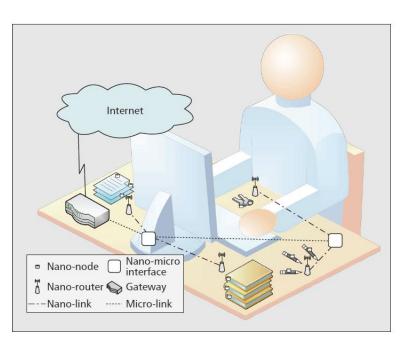
Molecular absorption

$$A_{abs} = \frac{1}{\tau} = e^{k(f)d}$$

Molecular Noise


$$T_{mol} = T_0(1-\tau) = T_0 \left(-e^{-k(f)d} \right)$$

J. M. Jornet and I. F. Akyildiz, "Channel Capacity of Electromagnetic Nanonetworks in the Terahertz Band," in *Proc. IEEE International Conference in Communications, Cape Town*, 2010.



Applications

Wireless Sensor Networks at the nanoscale: Wireless Nanosensor Networks

Health monitoring

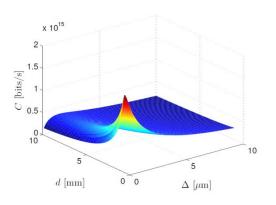
Internet of nano-things

Ian F. Akyildiz, Josep Miquel Jornet, "The Internet of Nano-Things", IEEE Wireless Communications, 2010.

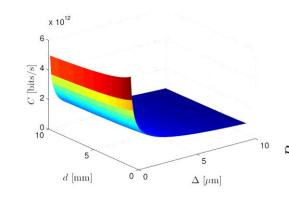
In progress activity

- Enabling Electromagnetic Communication among Nanosensor Devices (ELCONA)
 - To design, simulate, manufacture and measure novel graphenebased nano-antennas
 - To provide a physical channel model for THz-band communications at the nanoscale and validate it experimentally
 - To develop a network architecture for Wireless Nanosensor Networks based on these antennas

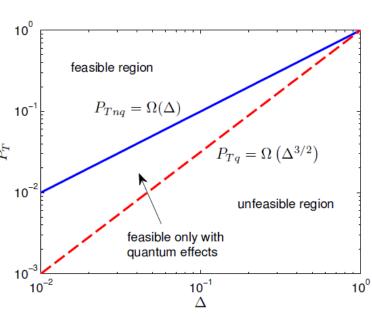
In progress activity


- Enabling Electromagnetic Communication among Nanosensor Devices (ELCONA)
 - Project submitted to the ICT FET-Open call
 - Currently in the second stage (full proposal just submitted)
 - Consortium partners
 - Nanonetworking Center in Catalunya UPC (Spain)
 - Sineurop Nanotech GmbH (Germany)
 - University of Wuppertal (Germany)
 - Royal Institute of Technology KTH (Sweden)
 - Koc University (Turkey)
 - Phantoms Foundation (Spain)

In progress activity



- Theory of scalability for Graphene-based Wireless
 Communications at the nanoscale
 - Study how metrics scale
 - Channel capacity



without quantum effects (metal)

with quantum effects (graphene)

Ignacio Llatser, Albert Cabellos-Aparicio, Eduard Alarcón, Josep Miquel Jornet, Ian F. Akyildiz, "Scalability of the Channel Capacity of Electromagnetic Nanonetworks in the Terahertz Band", submitted to IEEE Transactions on Wireless Communications.

Summary

- Graphene-based nano-antennas enable wireless communications at the nanoscale
 - Antenna size in the order of 1 μm
 - Radiation at the THz band
- Graphene-enabled wireless communications will be radically different from current ones
 - Classical communication paradigms and techniques need to be revised
- Countless applications
 - Wireless Nanosensor Networks

NaNoNetworking Center in Catalunya (N3Cat)

Graphene-enabled Wireless Communications

About N3Cat
Research interests
N3Cat in CATGRAPHNET

Ignacio Llatser, Albert Cabellos & Josep Solé-Pareta

{llatser, acabello, pareta}@ac.upc.edu