
Nanonetworks: Motivation

In order to overcome their limitations, these nano-devices can be interconnected to

execute more complex tasks in a distributed manner. The resulting nanonetworks are

envisaged to expand the capabilities and applications of single nano-machines, both in

terms of complexity and range of operation.

Nanotechnology and Graphene

Nanotechnology is a truly multidisciplinary field which has yielded numerous discoveries,

such as graphene and its incredible properties. Indeed, graphene is considered essential

for the development of electronic components in a scale ranging from one to a few

hundreds of nanometers, such as:

Nanoscale FET transistors

Nanosensors

Nanoactuators

Nanobatteries

Nano-Antennas

Autonomous Nano-Devices

The integration of these nano-components in a single device, just a few micrometers in

size, will result in autonomous nano-devices able to perform specific tasks at the nano-

level, such as computing, data storing, sensing or actuation.

We propose the following conceptual architecture of a nanosensor mote with

communication capabilities:
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Graphene-Based Nano-Antennas

Novel nanomaterials such as Carbon Nanotubes (CNTs) and Graphene Nanoribbons

(GNRs) have been proposed as the building material of novel nano-antennas.

Their development stems from the necessity of solutions which radiate in adequate

frequencies. If we used the classical approach, antennas reduced to the nanoscale would

radiate at extremely high frequencies, compromising the feasibility of the communication.

Graphene-Based Nano-Antennas (III)

The numerical results show that the EM wave propagation speed can be up to 100 times 

below that of speed of light in vacuum, for CNT and GNR in both edge configurations.

For all this, a 1 µm long antenna radiates in the Terahertz Band (0.1 – 10.0 THz).

Feasible input resistances are achieved with higher voltage or larger antenna dimensions.

Theory of Scalability of Nanonetworks

As the elements in nanonetworks inherently lie in the nanoscale, it is interesting to study

how networks scale when its size is reduced.

The dependences among performance metrics are analyzed:

Device Size

Transmission Distance

Channel Capacity

Future Work on Graphene-Based Nanonetworks

Our current projects include:

To design, simulate and develop experimental prototypes of novel graphene-based 

nano-antennas.

To provide a channel model for THz-band communications at the nanoscale.

To develop a network architecture for Wireless Nanosensor Networks(WNSN) based on 

the antennas here presented.
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Terahertz Propagation Model

The terahertz band is an unlicensed frequency range between 100 GHz and 10 THz.

The terahertz channel is mainly determined by molecular absorption, i.e. the conversion

of the wave energy into kinetic energy in several gas molecules. It determines path-loss

and molecular noise, which lead to the conclusion that the channel is highly frequency

selective.

Graphene-Based Nano-Antennas (II)

By accounting for the quantum interactions between every single atom in the graphene

structure, the transmission line properties of nano-antennas can be accurately modeled,
namely, kinetic inductance (L), quantum capacitance (C) and contact resistance (R).

These depend on the antenna dimensions, Fermi energy and the structure of their edge.
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GNR-based nano-patch (L=1 µm)
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Path-Loss Molecular Noise

The radiation frequency (f) can be calculated

if the transmission line properties are known.
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