
WiSync: An Architecture for Fast Synchronization
through On-Chip Wireless Communication ∗

Sergi Abadal,†‡ Albert Cabellos-Aparicio,‡ Eduard Alarcón,‡ and Josep Torrellas†
†Univ. of Illinois, Urbana-Champaign, IL, USA ‡Univ. Politècnica de Catalunya, Barcelona, Spain

http://iacoma.cs.uiuc.edu abadal@ac.upc.edu

Abstract
In shared-memory multiprocessing, fine-grain synchroniza-
tion is challenging because it requires frequent communica-
tion. As technology scaling delivers larger manycore chips,
such pattern is expected to remain costly to support.

In this paper, we propose to address this challenge by
using on-chip wireless communication. Each core has a
transceiver and an antenna to communicate with all the
other cores. This environment supports very low latency
global communication. Our architecture, called WiSync, uses
a per-core Broadcast Memory (BM). When a core writes to
its BM, all the other 100+ BMs get updated in less than
10 processor cycles. We also use a second wireless chan-
nel with cheaper transfers to execute barriers efficiently.
WiSync supports multiprogramming, virtual memory, and
context switching. Our evaluation with simulations of 128-
threaded kernels and 64-threaded applications shows that
WiSync speeds-up synchronization substantially. Compared
to using advanced conventional synchronization, WiSync at-
tains an average speedup of nearly one order of magnitude
for the kernels, and 1.12 for PARSEC and SPLASH-2.

Keywords on-chip wireless communication; synchronization

1. Introduction
In shared-memory programming, there are several common
idioms that require frequent synchronization between poten-
tially far-off processors. One is mutual exclusion to popu-
lar locations, which involves repeatedly writing and reading
locks and/or other variables. Another is frequently-accessed
global barriers, which involve reading and writing counts
and flags. Other patterns include repeated broadcasts, reduc-
tions, and producer-consumer communications which, in ad-

∗This work was supported in part by NSF under grants CCF-1012759,
CNS-1116237, and CCF-1536795; by the Catalan Government under grant
2014SGR-1427; and by the Spanish State Ministry of Economy and Com-
petitiveness under grant aid PCIN-2015-012.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’16, April 02–06, 2016, Atlanta, GA, USA.
c© 2016 ACM. ISBN 978-1-4503-4091-5/16/04. . . $15.00.

DOI: http://dx.doi.org/10.1145/2872362.2872396.

dition to the data communicated, often need flags to coordi-
nate writes and reads.

Computer architectures have traditionally struggled to
support these patterns efficiently. Some machines have pro-
vided advanced hardware support, such as a barrier net-
work in Cray T3D [12], synchronization registers in Cray
T3E [38], a collectives network in Blue Gene/L [15], and
fetch-and-Φ operations in the SGI Origin [25]. Also, there
are many research proposals for advanced hardware support
for synchronization (e.g., [5, 7, 26, 37, 40, 53]). As technol-
ogy scaling delivers larger manycore chips, these patterns
are expected to remain costly to support within the chip.

On-chip wireless technology provides a promising ap-
proach to address this challenge [1, 3, 13]. Suppose that each
core is augmented with a transceiver (i.e., a transmitter plus
a receiver) and an antenna. The transmitter modulates and
radiates Radio Frequency (RF) signals through the antenna.
The signals propagate throughout the chip and are received
by all the receiver antennas tuned to the same frequency.

This environment provides two key supports for the id-
ioms outlined above. First, since all antennas are listening,
it naturally supports broadcast. Consequently, global com-
munication is easily supported. Second, the latency of point-
to-point communication is at least one order of magnitude
lower than in current on-chip networks (i.e., around 5 pro-
cessor cycles), and not dependent on the distance between
source and destination.

There are existing prototypes of on-chip antennas and
transceivers using conservative implementations [14, 49, 51,
52]. For example, Yu et al. [51] used standard 65 nm CMOS
technology to build an antenna and transceiver that provided
a bandwidth of 16 Gbit/s (enough for our purposes, as we
will see) with an area of 0.23 mm2 and a power consump-
tion of 31.2 mW. This design is conservative — a result
of the current lack of real uses for this technology beyond
sensor networks. However, extrapolating this design using
scaling projections [11] backed up by recent implementa-
tion trends [2, 19], it seems reasonable to use 22 nm CMOS
technology to build a similar transceiver and antenna with an
area of 0.1 mm2 at 16 mW, providing the same 16 Gbit/s or
perhaps higher.

In this paper, we present a novel architecture that lever-
ages wireless communication in a large manycore to perform
fast synchronization. We call it WiSync. The key component
of WiSync is a per-core Broadcast Memory (BM). Thanks to

the wireless communication, when a core writes to its BM,
all the other 100+ BMs get updated in less than 10 proces-
sor cycles. WiSync uses two wireless channels: one for data
transfer, and a cheaper one that transfers only tones to ex-
ecute barriers very efficiently. We also present an example
ISA. The resulting manycore supports multiprogramming,
virtual memory, and context switching.

We evaluate WiSync with simulations of 128-threaded
kernels and 64-threaded applications. The results show that
WiSync speeds-up synchronization substantially. Compared
to using advanced conventional synchronization, WiSync
delivers an average speedup of nearly one order of magni-
tude for the kernels, and 1.12 for PARSEC and SPLASH-2.

2. Background
Recent advances in CMOS RF technology [18, 24, 28,
29, 36, 39] have enabled the development of antennas
and transceivers that can operate in chip-scale settings. A
transceiver is mainly characterized by the frequency band
at which it transmits. The width of the frequency band de-
termines the bandwidth provided by the transceiver. Specifi-
cally, using simple signal modulation, it can be shown that a
given frequency band in GHz results in the same number of
Gigabits per second (Gb/s) in bandwidth provided [8]. Com-
mon frequency bands for state-of-the-art on-chip wireless
networks are 16-20 GHz wide, with a center at around 60
GHz. Hence, the bandwidth of the transceiver is 16-20 Gb/s.

The design of a transceiver involves tradeoffs between
area, power consumption, bandwidth, and design complex-
ity. Generally, for a given frequency point, widening the fre-
quency band increases the area and power overheads lin-
early, up to a certain limit. Beyond that limit, increasing
the frequency band implies using more complex and power-
hungry RF components which cause a large leap in area and
power. In all cases, circuit-level and system-level optimiza-
tions can help to reduce area and power without impacting
upon the bandwidth.

On the other hand, operating at a higher frequency point
(e.g., 90 GHz) reduces the area (since the lateral size of
the passive RF components is roughly inversely proportional
to the frequency), and generally makes it easier to support
wider frequency bands. However, the technology at 100 GHz
and higher frequencies is still exploratory.

Currently, there are implementations of on-chip antennas
and transceivers working at frequency bands around 60 GHz
and 90 GHz [14, 49, 51, 52]. As indicated before, the im-
plementations are conservative because there is a lack of
real uses for this technology beyond sensor networks. Yu et
al. [51] used 65 nm CMOS technology to build an antenna
and transceiver that provided a bandwidth of 16 Gb/s with
an area of 0.23 mm2 and a power of 31.2 mW. At this tech-
nology, a zig-zag antenna working at 60 GHz takes an area
of approximately 0.02 mm2 [14].

Using these numbers and scaling projections [11] backed
up by recent implementation trends [2, 19], we envision

that one could build an antenna and transceiver at 22-nm
technology with an area of 0.1 mm2 at 16 mW, providing
the same 16 Gb/s. To reach these figures, we consider a
sublinear area scaling, more conservative than the linear
trend used in related RF interconnect works [11, 33], as well
as a power reduction commensurate with the 1.67x scaling
trend predicted in [11]. Alternatively, one can double the
bandwidth to 32 Gb/s, with the reduced area but with little
gain in power consumption over the 65 nm numbers.

Note that, in the chip, the antenna and transceiver are
kept powered-on even if they are not communicating. This
is done to reduce start-up/wind-down overhead. Hence, they
consume about the same power while transmitting as while
not transmitting.
Future Trends. Currently, both industrial and academic
researchers are pushing the state-of-the-art toward minia-
turization and higher frequencies [18, 19, 20, 28, 35, 48].
Abadal et al. [2] take a wide variety of transceiver designs
and extrapolate area and power trends. The trends point to-
ward increasing frequency and reducing area and power.
They predict that using CMOS (beyond 22 nm), SiGe BiC-
MOS, or Graphene technologies at 300 GHz frequencies,
one could support bandwidths of 64 Gb/s with an area in the
order of 0.01 mm2. Others [11, 24] make similar predictions,
pushing the bandwidth to 100 Gb/s. Overall, we expect that,
if the case for on-chip wireless communication in general-
purpose computing is made, progress towards these aims
will be sped-up.
Other Technologies. There are two emerging technologies
that can also offer on-chip broadcast capabilities: transmis-
sion lines (TLs) [4, 5, 10, 33, 34, 41, 43] and nanophoton-
ics [6, 21, 23, 42, 46, 47]. While these technologies are more
energy-efficient and provide more bandwidth than wireless
communication, they are more complicated and less scal-
able than wireless communication. Indeed, these technolo-
gies complicate the floorplan, as they require laying out an
extra network. In terms of scalability, TLs are challenged
by signal reflection, while nanophotonics by laser power re-
quirements. We discuss them further in Section 8.

3. Overview of WiSync
3.1 Main Idea
Fine-grain synchronization has traditionally been challeng-
ing to support efficiently because it involves frequent com-
munication between potentially far-off processors. On-chip
wireless technology can address this bottleneck. If each core
in a large manycore uses an antenna and a transceiver to send
and receive wireless signals, we have two key properties.

First, since all antennas are listening, we naturally have
broadcast (or multicast) of writes. Second, the latency of
point-to-point communication is at least one order of magni-
tude lower than in current on-chip networks, and not depen-
dent on the distance between source and destination. Specif-
ically, consider broadcasting a 64-bit datum. Adding up a

special address and other bits, the message may be about
80 bits. With current technology, the wireless transfer can
be done in five 1-ns cycles; with future technology, it may
be doable in 2 ns. Adding to this, wireless technology does
not complicate the chip layout because no additional wires
are needed. Moreover, both area and power are scalable with
CMOS technology.

A limitation of on-chip wireless communication is that,
if we use a single data transfer channel to minimize cost,
only one core can send data at a time. When the network is
busy, a core has to wait; if it is free and the core attempts to
send data, there may still be a collision with another core.
In this case, the cycle(s) are lost and both cores have to
retry. Wireless communication also introduces issues related
to reliability and security — e.g., an external entity may
disrupt the communication unintentionally or on purpose. In
this paper, we do not consider these issues.

WiSync abstracts the wireless capability in the form of a
per-core Broadcast Memory (BM) that is used by variables
declared of type broadcast in the program. All BMs are
connected to the wireless network, and they all contain the
exact same, replicated variables. When a core writes to a
location in its BM, all the other BMs get automatically
updated. There is a total order of writes to BMs across all
cores.

Figure 1 shows this idea. Variables x and y are replicated
in all the BMs. Three concurrent writes by different proces-
sors can result in different interleavings, but no update is lost
and all processors observe the same write interleaving. The
jagged line means that the non-local BMs are physically far.

wr x0 wr x2

yx yx yx

BM BM BM

wr y1

wr x0

wr x2

wr y1

wr x2

wr x0

wr y1
networkWireless

C C C0 1 2

Can be:

Long bus
(logical)

Figure 1: How wireless writes appear in WiSync.

The operating system manages the BM resource with vir-
tual memory, while the program addresses the BM transpar-
ently. As a result, WiSync supports multiprogramming —
it is likely that a large manycore will be shared by mul-
tiple applications — context switching, process migration,
and memory access protection.

3.2 WiSync Architecture
Figure 2 shows the WiSync architecture. Each node in the
manycore contains: a core with its L1 and L2 caches, a
transceiver, two antennas, the BM, and two special bits. The
second antenna is for a special, inexpensive Tone channel
that we discuss later, and adds a very small area and power
overhead. The transceiver has three modules: physical layer
(PHY), Medium Access Control (MAC), and the Tone Con-

troller. The PHY module interfaces with the antennas by
serializing and modulating the data to transmit, detecting
the transmission collisions, and demodulating and deserial-
izing the received data. The MAC module determines when
a write should be transmitted through the wireless network,
and manages the collisions.

L1 + L2Core +PHY

MACCntr.
Tone

Failure Bit (AFB)
Atomicity

Transceiver
Data &

ToneProcessor Chip

B−Memory (BM)

Antennas

Write Completion
Bit (WCB)

Figure 2: WiSync architecture. The different colors represent
different programs running on the chip.

To understand the second antenna and the tone controller,
note that, to keep the energy and area footprint of the wire-
less hardware low, WiSync transfers data in a single fre-
quency band. However, we will see that it is beneficial to
add an additional channel that only supports sending a tone.
The tone controller manages it.

The BM stores the variables that are communicated
through the wireless network. These variables are declared
as broadcast variables in the program, and are kept repli-
cated in all the BMs. They are uncacheable in the core’s
L1-L2 cache hierarchy. The core accesses its BM with plain
loads and stores, using a range of virtual addresses that are
translated in the TLB, but that bypass the L1 and L2 caches.
The regular variables use the caches, which are kept coher-
ent with an ordinary cache coherence protocol.

A plain load instruction can read from an address in the
local BM into a register. A plain store instruction can store
the value of a register into an address in the local BM and
(thanks to the wireless network) in all the BMs. The write
may collide in the wireless network, in which case no BM
(including the local one) is updated. The MAC module keeps
retrying the wireless transmission until it succeeds, at which
point the local BM is also updated.

To reduce overhead, WiSync has Bulk load and store
instructions. They take a register R and a BM address
BM addr. A Bulk load loads from four consecutive loca-
tions in the local BM starting at BM addr into four registers
starting at R. A Bulk store stores the four registers to four
consecutive locations starting at BM addr in the local and
the remote BMs.

WiSync supports atomic read-modify-write (RMW) in-
structions to the BM, such as Test&Set, Fetch&Inc, Fetch&
Add, and Compare-and-Swap (CAS). A RMW instruction
involves reading a local BM location, bringing the data to
the pipeline, updating the data in the pipeline, and then writ-
ing the result to the local BM and (using the wireless net-
work) to all the BMs. To succeed, the instruction must guar-
antee atomicity from the time it reads from the BM until all
the BMs are updated, possibly after several collisions and

retries. To provide correct operation, the BM controller has
two bits called Write Completion Bit (WCB) and Atomicity
Failure Bit (AFB) (Figure 2).

Loads, stores, and RMW instructions can operate on
different-sized data, although we will focus on 64-bit op-
erations here.

As shown in Figure 2, multiple programs can be running
concurrently and trying to use the BM and wireless network
at the same time. Conventional access-bit permissions in the
TLB ensure that programs access only their own data.

4. WiSync Architecture
4.1 Organization of the Wireless Transfer
A wireless system can be set up to use a single channel or
multiple channels at different frequency ranges. Supporting
multiple channels enables parallel wireless communication
that can be exploited both within a program and across
programs. However, it adds complication. Since we want to
keep our system simple and the transceiver small, we choose
to use a single channel.

We time-slot the channel in 1-ns slots — equal to the
clock period of our 1GHz cores. Typically, we want to use
the wireless network for single writes, such as a write to a
reduction variable or to a lock. Hence, a transfer involves: a
64-bit datum, its address (11 bits, as we will see), a Bulk bit
(to denote whether this is the first datum of a Bulk transfer),
and a Tone bit (to denote whether this is for the tone channel,
as we will see). The total size of a transfer is 77 bits.

As discussed in Section 2, current transceivers can trans-
mit at 16-32 Gb/s [51], although in the next few years, this
number may go up [24]. Hence, we use 4 cycles to trans-
fer the 77 bits, which gives a required wireless bandwidth of
77b/4ns≈19Gb/s. This is a conservative value [51].

To keep the transceiver simple, WiSync takes 5 cycles
for the actual transmission. The second cycle is used for
the transceiver to listen if there was a collision in the first
cycle. If there was a collision, the transfer is aborted, and
the channel is free in the third cycle. Otherwise, the next
three cycles send the rest of the message with guaranteed no
collision. In this way, the penalty of a collision is 2 cycles
instead of 5 cycles. A transmitter-receiver switch capable of
working at these speeds has been demonstrated [45].

As per Section 2, a 19 Gb/s bandwidth requires a trans-
mission frequency band of 19 GHz. We choose the central
frequency to be 60 GHz, which can be supported with a
small transceiver [2]. As shown in Figure 3, we call the re-
sulting channel the Data channel. A transceiver and antenna
for a similar frequency range have been built, and shown to
consume 31.2 mW [51]. It is widely expected that technol-
ogy advances will reduce this power.

To help message processing, every wireless message car-
ries the Bulk bit in its first cycle. In ordinary accesses, the
bit is zero; in Bulk accesses, it is set. When a transceiver
observes the first cycle of a message, it knows the length of

Channel
Tone

Channel

90.589.5

6050.5 69.5 90 Freq. (GHz)

S
ig

n
al

 S
tr

en
g
th

1GHz19GHz

Data

Figure 3: Transmission channels in WiSync.

the message: if the Bulk bit is zero, the message will take 5
cycles; otherwise it will take 15 cycles.

The reason why a Bulk message only takes 15 cycles
rather than 4×5=20 cycles is because we optimize it. Specif-
ically, the second, third, and fourth word of a Bulk message
do not need the collision check that occurs in the second cy-
cle of an ordinary message. In addition, they do not need to
carry an address, Bulk bit or Tone bit. Hence, given the net-
work bandwidth that we use, these three words transfer their
3×64=192 bits in 10 cycles. The complete Bulk message
then takes 5+10=15 cycles to transfer.

When the wireless network is busy, a transceiver ready
to send a message waits to send it until the cycle when the
network is next expected to be free. This is 15 or 5 cycles
after the last message started (depending on whether or not
that message was a Bulk one), or after the second cycle if a
collision is detected.

In a collision, the MAC module in each of the collid-
ing nodes stops the transmission, discards the messed-up
information, and prevents the store from updating the lo-
cal BM. It then retries the transmission. To maximize the
use of the network, the MAC module uses a retry algorithm
that temporarily reduces its assertiveness when there is con-
tention. WiSync uses the well-known exponential backoff al-
gorithm [27, 31, 32], which progressively increases the wait-
ing period on a collision.

To reduce contention for the Data channel, WiSync pro-
vides an additional channel called the Tone channel that of-
floads the common barrier synchronization pattern. We ap-
ply the proposal of Oh et al. [33] for transmission lines, to
wireless networks. In the Tone channel, nodes send a tone
rather than data.

Specifically, the first core that reaches the barrier sends
a message through the Data channel with the Tone bit set.
On receiving the message, all the other nodes respond with
a continuous tone in the Tone channel, creating repeated
collisions. Then, as soon as a core reaches the barrier, its
transceiver stops sending the tone. Hence, when the tone
finally disappears, all cores have arrived at the barrier.

The Tone channel is also slotted in 1 ns slots. Each mes-
sage is 1 bit, for a resulting transmission rate of 1 Gb/s. This
means that the frequency band of the Tone channel is only
1 GHz. With such a short band, the power needed to sup-
port it (i.e., the transceiver extensions and a second antenna)
is very small. With the same conservative assumptions we
have been using, we estimate it adds 2 mW.

We place this channel at 90 GHz (Figure 3), far from the
Data channel to avoid interference. At these high frequen-
cies, signal attenuation is higher, but this is no problem be-
cause the Tone channel only transfers a tone rather than data.

4.2 B-Memory Operation and Interface
The BM in a node contains space for all the allocated vari-
ables that are declared as broadcast type in the programs cur-
rently running on the chip. Such variables are replicated in
all the BMs and their values are kept consistent at all times.
To use the BM efficiently, each BM entry is 64 bits rather
than a line. Moreover, for protection, each entry is tagged
with the PID of the program or process that allocated it.

When a program allocates a broadcast variable, the vari-
able is allocated in all the BMs, and is tagged with the cor-
rect PID. When a core reads or writes a BM entry, the PID
is checked in hardware to ensure the action is legal (Sec-
tion 4.4 describes the address translation). When a variable
is deallocated, it is removed from all the BMs.

The optimal size of the BM in each node is likely to be
small, e.g., four 4-KB pages. The reason is two-fold. First,
large memories require many address bits to be included in
each wireless message. With 16KB, we already need 11 bits.
Secondly, programs would not usually declare many broad-
cast variables. If the BM runs out of space for a variable,
we envision transparently allocating the variable in a page
of regular memory, and access it through the wired network.

4.2.1 Interface to Basic BM Instructions
Loads access the local BM and always succeed. For stores
and RMW instructions, WiSync has the Write Completion
Bit (WCB) and the Atomicity Failure Bit (AFB) (Figure 2).
These bits are set/reset in hardware and accessible to the
software through a register.

The WCB is associated with a store or RMW instruction.
It is set when the update operation completes — both the
global broadcast and the local BM update. In certain situa-
tions, the OS or the user code may benefit from this infor-
mation. The AFB is associated with a RMW instruction. It
is set if its atomicity fails — in which case the instruction
completes without the BM write.

When a core executes a store instruction, the transceiver
first attempts to broadcast the update to all the remote BMs.
If there is a network collision, the transceiver keeps retrying
until it succeeds. After it succeeds, the local BM is updated,
the WCB gets set, and the pipeline receives the acknowledg-
ment that the store is performed. No subsequent store from
the local core can proceed to the global broadcast until the
current one has performed all the steps above. Subsequent
loads from the local core may or may not be allowed to read
any BM address while the current write is in progress, de-
pending on the memory consistency model desired. If loads
are allowed to, we have a TSO memory model; if they are
not allowed to read any BM address beyond the one being
written, we have a sequential consistency model.

When a core executes a RMW instruction, the hardware
reads the datum from the local BM into the pipeline, up-
dates the datum in the pipeline, and then tries to write the
datum to the BM. As usual, the write involves performing
the global broadcast first and, when it succeeds, updating
the local BM. It is possible that, after the read from the local
BM and before the write manages to get to the wireless net-
work, a remote node updates the variable in the local BM.
This is detected in hardware by comparing the addresses of
incoming stores to those of pending RMW accesses. In this
case, the atomicity of the instruction has failed. As soon as
this occurs, the AFB bit gets set. Later, when the write is at-
tempted, it fails — i.e., the RMW instruction neither broad-
casts its value nor it updates the local BM. At that time, the
WCB gets set because the RMW operation has terminated.

Consequently, a RMW instruction needs to be followed
by a software check of the AFB bit. The instruction has ex-
ecuted atomically and, therefore, performed the write, only
if AFB=0. If, instead, AFB=1, the write never occurred, and
the RMW instruction has to be re-executed. Note that this
discussion assumes that the hardware does not allow a load
following the RMW instruction to read the AFB register un-
til after the RMW instruction has finished. An exception be-
tween the RMW instruction and the AFB check before the
wireless transfer has succeeded automatically sets AFB and
aborts the wireless transfer. AFB is saved and restored on
context switch.

4.2.2 Interface to Tone Channel Instructions
A core has special BM load and store instructions that enable
the use of the Tone channel for a particular BM address.
They are tone ld R, BM addr and tone st R, BM addr.

Recall that we use the Tone channel to implement a bar-
rier: each core needs to tell all the others when it has arrived
at the barrier. Tone ld and tone st provide a very efficient im-
plementation. Specifically, when a core reaches the barrier,
it performs a tone st operation on the BM location. Note that
this is not an ordinary update of the location. Then, the core
keeps reading the BM location using tone ld. The load will
return a special code when all the participating cores have
performed the tone st. In the meantime, the core may choose
to do other work, while periodically polling with tone ld.

The implementation of these instructions relies on the
tone controller as follows. On a tone st, the hardware does
not update the BM location. Instead, the tone controller
checks whether it is currently issuing a tone for this address
in the Tone channel. If so, the local core is not the first core
to arrive at the barrier, and the controller stops issuing the
tone; otherwise, the local core is the first one to arrive, and
the controller sends a message in the Data channel with the
address of the BM location and the Tone bit set. The content
of the 64-bit data field is immaterial.

The tone controller in any node also performs two actions
based on incoming events. First, when it receives a message
in the Data channel with the Tone bit set, if the local core

if (!CAS(BM_addr, R_old, R_new)) {

if (AFB) {
jmp retry

}

else {

/* success */
}

if (AFB) {
jmp retry

}

else {

/* success */
}

/* atomicity failure */

}
(b)

retry: fetch&inc R, BM_addr retry: ld R_old, BM_addr
. . . .

jmp retry /* comparison already failed */

}
else {

for () {

/* work */

tone_st (addr)
spin until (tone_ld(addr)==local_sense)

}

Broadcast Writer

for () {

spin until (release==local_sense)

read data

fetch&add (count,−1)
}

Broadcast Readers

(d)

(c)

barrier: local sense = !local_sense

write data
count = N
release = local_sense
spin until (count==0)

for () {

}

local_sense = !local_sense local_sense = !local_sense

(a)

Figure 4: Examples of code used for synchronization.

participates in the barrier, it starts issuing a continuous tone
in the Tone channel. This will cause repeated collisions with
other nodes, which is precisely what we want. We will see
in Section 4.4 how barrier participation is detected.

The second action of the tone controller occurs as soon as
it detects that the Tone channel has fallen silent. At this point,
all the cores have reached the barrier. Then, the controller
toggles the value of the local BM location. Such location
can only take the values zero or non-zero.

This is a sense-reversing barrier [16]. When a core spin-
ning with tone ld on that address observes that the value has
changed, it knows that the barrier has ended. Later, we show
how to support multiple concurrent tone barriers.

4.3 Supporting Synchronization Operations
We now outline how WiSync supports some of the popular
synchronization operations.

4.3.1 Basic Read-Modify-Write Primitives
Figure 4(a) shows the pseudo-code of the algorithm used
to execute a basic RMW operation. The example uses
fetch&increment. After the core executes the RMW instruc-
tion, it checks the AFB register bit. If it is set, the instruction
has been aborted and it has to be retried. Otherwise, the op-
eration performed successfully. Similar pseudo-code is used
for test&set and fetch&add.

Figure 4(b) shows pseudo-code for CAS. The code as-
sumes that a CAS returns zero if the content of the BM lo-
cation is different from the CAS’ second argument; other-
wise, it returns non-zero. Even if it returns non-zero, how-
ever, the CAS may not have executed atomically (and failed
to perform the wireless broadcast). Hence, the code checks
the AFB register. If it is set, the CAS needs to be retried.

4.3.2 Barriers Using the Data Channel
There are two types of barriers: AND-barriers and OR-
barriers. The former are the conventional ones, where a
processor arriving at a barrier waits until all other proces-
sors have also arrived. For them, we use the popular sense-
reversing barrier algorithm [16] with fetch&increment. To

save BM space, a single 64-bit BM entry could contain the
Count variable in one 32-bit word and the Release flag in the
other word.

OR-barriers (also called Eurekas) are triggered as soon
as one of the participating processors detects a certain con-
dition, e.g., overflow of a variable, the solution of a parallel
search, or an exception. We implement them as a boolean
variable in a BM location. All processors periodically read it;
when one detects the condition, it changes the variable. We
use a sense-reversing implementation to allow barrier reuse.

4.3.3 Tone Barriers
AND-barriers are supported more efficiently with the Tone
channel. As per Section 4.2.2, each core executes the pseudo-
code algorithm of Figure 4(c). It implements a sense-
reversing barrier with minimal communication. On arrival,
the first core sends a message through the Data channel,
while later cores simply remove their tone from the Tone
channel. Then, all cores spin in their local BM location.
When the Tone channel falls silent, the controller toggles
the location in all the BMs, which releases all cores. This is
a scalable implementation.

4.3.4 Producer-Consumer Operation
To support the single producer, single consumer pattern, we
use a BM address for the data and a BM address for a
flag. The producer writes the data to the data address, sets
the flag, and then spins on the flag until it is cleared. The
consumer spins on the flag until it is set, reads the data, and
then clears the flag. The process repeats. Often, producer and
consumer will use bulk stores and bulk loads, respectively.
These instructions trigger reads and uninterruptible writes of
multiple BM addresses at a time.

4.3.5 Reduction and Multicast/Broadcast
The BM supports reductions very efficiently. For instance,
when all the cores need to add to a single variable, they can
use fetch&add R, BM addr. To support different types of
reductions, one can include other fetch&Φ instructions and,

for scientific computations, floating-point versions of them.
Very tight reduction loops are supported efficiently.

Multicast/broadcast is the single producer, multiple con-
sumers pattern, and is also supported very efficiently. The
producer writes to a BM address and all consumers read
from it. To provide ordering between the writer and the read-
ers, we can use an extension of the full-empty flag discussed
above. Specifically, we use two additional BM addresses (or
store two variables in different halves of the same BM ad-
dress). One variable is a count, and the other a toggling flag,
effectively implementing a sense-reversing barrier.

The pseudo-code is Figure 4(d). The producer writes the
data, sets the count to N (the number of readers), toggles the
flag, and then spins on the count until it is zero. Each reader
spins on the flag until it toggles, reads the data, and then
decrements the flag with fetch&add. The process repeats.

4.4 BM Entry Allocation and Protection
To access the BM, WiSync uses TLB-based address trans-
lation, so that programs do not have to manage memory
and can benefit from access protection. However, traditional
page-level assignment is suboptimal, as the BM is small and
cannot afford the memory wastage due to page-level frag-
mentation when multiple programs use the BM. Indeed, if
each program allocated a single broadcast variable but was
assigned a full page, the BM would soon run out of space.

To address this problem, WiSync uses page-level TLB
translation but lets different programs use different chunks
of the same physical BM page — tagging each chunk with
the PID of the program that owns it. Different programs have
virtual pages mapped to the same physical BM page, but
each program only uses its own, non-overlapping chunks of
the physical page.

The smaller the chunk size is, the better the page can be
utilized, and there is less fragmentation. However, there is
more bookkeeping and tag overhead. In this paper, we do
not examine these tradeoffs. Rather, we reckon that using
BM effectively is important and, hence, use 64-bit chunks.

When a core allocates an entry in the local and remote
BMs, the entry is tagged in hardware with the program’s
PID. When a core accesses the BM, the address is first
translated. Then, at the target BM location, the program’s
PID is compared to the PID tag (Figure 5). A mismatch is a
protection violation.

TLB

Page #
Virtual

Physical
Page #

Offset
Page

Data PID tag

PID

Page #1

Page #2

B−Mem

Figure 5: Broadcast memory address translation.

To allocate an entry in the BM, the core uses a special
allocation instruction. The instruction broadcasts a message
in the wireless network that contains the address (11 bits),
PID (e.g., 8 bits), and a few miscellaneous bits. On reception,
each node in the chip allocates an entry at the same address
in its local BM and tags it with the PID. When this operation
succeeds, the local BM allocates and tags an entry at the
same address. While it appears inefficient that a variable
takes space in all the BMs (even in the BMs of cores that
do not run the relevant program), we do it for simplicity.

The allocation of a variable that uses the Tone Channel
proceeds similarly. However, in addition, the OS in the re-
ceiving nodes records whether or not this variable is locally
armed. Armed means that there is (or will be) a thread run-
ning on the local core that will participate in the tone barrier
protocol for the variable. Later, when the node receives a
message initiating a tone barrier for a variable, if the vari-
able is locally armed, the tone controller will participate by
starting a tone.

This discussion illustrates a restriction in the usage of
tone barriers. Unlike in conventional barriers, when a tone
barrier is allocated, the runtime needs to know which cores
will participate. This is because most of the tone barrier op-
eration is in hardware. If core participation cannot be deter-
mined until later on in the program, a tone barrier cannot be
used; instead, a Data channel barrier should be used.

5. Implementation Issues
5.1 Sharing the Tone Channel
At any given time, there may be multiple tone barriers (each
corresponding to a different BM address) that want to use
the Tone channel. WiSync responds by time-multiplexing
the Tone channel. Specifically, the Tone channel is slotted
with 1-ns slots, and the slots are assigned round-robin to the
currently-active tone barriers. A tone barrier is Active from
the time the first core arrives until the last participating one
arrives. Figure 6(a) shows how the slots in the Tone channel
are assigned when there are 1, 2, or 3 active tone barriers.

ActiveB
Table

B1B1 B1B1B1B1

B1 B1 B1

B1 B1

B2 B2 B2

B3 B3B2 B2

1

2

3

of Active
barriers Slot assignment

(a)

Time −−−>

Arrived

(b)

AllocB
Table

Addr

Armed

Addr

Figure 6: Sharing the Tone channel among several barriers.

To share the Tone channel, the tone controller in each
node keeps two tables (Figure 6(b)): one with the allocated
tone barriers (AllocB) and one with the active tone barriers
(ActiveB). These tables contain the same addresses and in
the same order in all the nodes of the chip. Such chip-wide
consistency is required for correct assignment of slots to

barriers. It is easy to support thanks to the wireless broadcast
capabilities.

In AllocB, each entry has the BM address of a tone
barrier variable plus the local Armed bit. When a tone barrier
variable is allocated by a program (Section 4.4), an entry is
created in the AllocB of all the nodes in the chip. It is also
at this point that the OS in each node sets the Armed bit
to either 1 or 0, as discussed in Section 4.4. Finally, when
the tone barrier variable is deallocated (possibly at program
termination), its entry is removed from the AllocB of all
nodes. At that time, all the entries lower in the table are
shifted up.

In ActiveB, each entry has the BM address of the tone
barrier variable plus an Arrived bit, which indicates whether
the local core has arrived at the barrier. The order of the
entries in this table determines the round-robin assignment
of Tone channel slots to the different active tone barriers.

For a given tone barrier B, when the first core arrives
at the barrier, the entry for B in AllocB is copied to the
lowest position in ActiveB. This is done in all the cores.
Specifically, if the first-arriving core is the local one, the
usual message is sent through the Data channel, the copy
is made, and then the Arrived bit in the copied entry is set.
Instead, if the first-arriving core was a remote one, when
the message that it placed in the Data channel is received,
the copy is made. Then, if the local Armed bit was clear,
the Arrived bit in the copied entry is set, and no tone is
issued in the Tone channel. Effectively, this node refuses
to participate in the barrier. On the other hand, if the local
Armed bit was set, the Arrived bit in the copied entry is left
clear, and the hardware starts issuing the tone in the Tone
channel — but only during the assigned slots. Later, when
the local processor arrives, the Arrived bit gets set and the
local tone terminates.

At any slot assigned to this active barrier, the local tone
controller uses the following algorithm. If the Arrived bit is
zero, issue the tone. Otherwise, listen for the tone; if there
is no tone, all cores have arrived. Hence, remove B’s entry
from ActiveB and shift all the lower entries up.

AllocB and ActiveB are identical across all nodes except
for the Armed and Arrived bits. As a result, all cores know
the assignment of slots to individual barriers at all times.
Note that the copying of an entry from AllocB to ActiveB
starts as soon as the first cycle of the message transfer in
the Data channel. The latency of the copy is hidden by the
subsequent cycles of the message transmission.

We size AllocB and ActiveB equally, and return an error
if an allocation overflows AllocB. In a multiprogramming
environment, the OS has to prevent a process from starving
out all other processes by using up all the AllocB entries;
this can be done by limiting the per-process use of AllocB.

5.2 Context Switching and Thread Migration
The Data channel in WiSync is designed to operate cor-
rectly under context switching, thread migration, and mul-

tiple threads sharing a core. Consider first a running thread
that gets preempted. Even while the thread is preempted,
updates from other cores to broadcast variables will reach
the local BM and update it. When the thread is rescheduled
again, it will see the correct BM state.

A thread can also migrate to another core and resume
execution there seamlessly. This is because the state of the
BMs is identical in all the nodes. The non-BM state is not
relevant to our discussion, as we assume that the cache
coherence keeps it coherent. Finally, multiple threads can
share a core, and update the same or different BM variables.

The situation is different for programs that use the Tone
channel. The reason is that this channel is hardware-managed.
In this case, threads can still be preempted, but cannot mi-
grate or share the core with another thread that also uses the
same Tone barrier. Indeed, when a tone barrier is allocated,
the OS arms or disarms the local AllocB entry, depending
on whether a local thread will participate. Migrating a thread
would require somehow migrating this state, which is costly.
Also, two threads on the same core trying to use the same
tone barrier would result in incorrect operation.

5.3 Adaptively Dealing with Contention
Our collision resolution algorithm uses exponential backoff.
On a collision, the transmitters back-off for a random num-
ber of cycles, whose range increases exponentially with the
number of retries. In our design, the range is between 0 and
2i-1 cycles, where i is a number incremented at every colli-
sion and decremented at every successful transmission.

It is possible to use more advanced policies with adaptiv-
ity based on the observed contention — a concept analogous
to Reactive Synchronization [27]. Adaptive algorithms are
not generally used in conventional non-broadcast wireless
networks because it is hard to get consensus on the decisions.
However, in our scenario, they would be easy to support be-
cause all nodes have all the information at all times. In our
work, we have not explored such techniques.

6. Evaluation Environment
We use cycle-level execution-driven simulations to model a
manycore with 16–256 cores, either with or without WiSync
support. The default core count is 64. We use the Multi2sim
simulator [44]. Table 1 shows the general parameters of the
architecture and, in its lower part, those related to WiSync.

We compare four manycore configurations, as shown
in Table 2. Baseline is a plain manycore with no wireless
hardware. For synchronization, it uses CAS and a sense-
reversing centralized barrier. Baseline+ enhances Baseline
hardware with: (1) virtual tree-based broadcast in the on-
chip network with flit replication at the router crossbars [22],
(2) MCS locks [31], and (3) Tournament barriers [31].
WiSyncNoT is WiSync without the Tone barrier support.

We run two sets of synchronization-intensive kernels and
a set of applications (Table 3). The first set of kernels con-

General Parameters
Architecture 22nm manycore with 16–256 cores (default: 64)
Core Out of order, 2-issue wide, 1GHz, x86 ISA
ROB; ld/st queue 64 entries; 20 entries
L1 cache Private 32KB WB, 2-way, 2-cycle RT, 64B lines
L2 cache Shared with per-core 512KB WB banks
L2 bank 8-way, 6-cycle RT (local), 64B lines
Cache coherence MOESI directory based
On-chip network 2D-mesh, 4 cycles/hop, 128-bit links
Off-chip memory Connected to 4 mem controllers, 110-cycle RT

WiSync Parameters
Per-core BM 16KB, 2-cycle RT, 64-bit wide entry
Tone channel 1Gb/s; 1-cycle transfer latency
Data Tran. channel 19Gb/s; 5-cyc transfer lat; collision detec. cyc 2
Collision handling Exponential backoff
Transceiv+2Anten Area: 0.12mm2; power: 18mW

Table 1: Architecture modeled. RT means round trip.

Config. BM? Broadcast HW Locks Barriers

Baseline No No CAS Centralized
Baseline+ No Virtual Tree MCS Tournament
WiSyncNoT Yes Wireless Wireless Wireless

(Data only)
WiSync Yes Wireless Wireless Wireless

(Data+Tone)

Table 2: Architecture configurations compared.

sists of four loops that execute barriers. They include a tight
loop that we wrote (TightLoop) and Livermore loops 2, 3,
and 6 [30]. In TightLoop, each thread adds-up the contents
of a 50-element array into a local variable and then syn-
chronizes in a barrier. The process repeats in a loop. For
the Livermore loops, we focus on only these three because,
as Sampson et al. [37] argue, they are the representative
ones with regard to synchronization. We parallelize them and
align their data as these authors do.

Barrier Kernels TightLoop, Livermore loops 2, 3, 6
CAS Kernels FIFO, LIFO, ADD
Application Suites SPLASH-2, PARSEC

Table 3: Kernels and applications executed.

The second set of kernels consists of three kernels that
execute CAS operations on lock-free data structures. In the
ADD kernel, there is a shared queue to which, through a
CAS, threads attempt to insert nodes taken from their private
memory pools. A given number of instructions are executed
between successive node insertions. In the FIFO and LIFO
kernels, threads both enqueue and dequeue nodes from the
shared queue or stack, respectively. Similarly, a given num-
ber of instructions are executed between accesses.

The applications are the entire SPLASH-2 [50] and PAR-
SEC [9] suites. We use the standard input set sizes in
SPLASH-2 and simsmall in PARSEC. Dedup and fluidani-
mate declare arrays of locks larger than the 16KB BM used
here. In these cases, we allocate the first 16KB in the BM and
the rest in plain memory. Finally, we modified the OpenMP
libraries in order to evaluate freqmine.

7. Evaluation
7.1 Area and Power Comparison
Table 4 compares the estimated area and power consumption
of the transceiver plus the two antennas to two popular 22
nm cores, namely the high performance Xeon Haswell and
the energy-efficient Atom Silvermont. The TDP (Thermal
Design Power) of an 18-core Haswell chip at 2.1 GHz is
135 W [17]. Correcting for frequency, we roughly estimate
a per-core 5 W TDP. The TDP of an 8-core Silvermont chip
(Avaton) at 1.7 GHz is 12 W [17]. At 1 GHz, we estimate a
per-core 1 W TDP. Area numbers are from the literature.

To estimate the area and power of the transceiver plus the
two antennas, we use the 22 nm 60 GHz figures outlined in
Section 2. Specifically, a transceiver and one antenna con-
sume 0.1 mm2 and 16 mW. We then augment the transceiver
with circuitry to support the tone channel, and add a second
antenna at 90 GHz for the tone channel. Scaling from the 65
nm figures in [14, 49] to 22 nm, we estimate that this addi-
tional capability costs 0.04 mm2 and 2 mW. Hence, the total
cost of the transceiver plus the two antennas is 0.14 mm2 and
18 mW (Table 4).

Xeon Atom (T+2A) (T+2A)
Haswell Silvermont T+2A /Xeon /Atom

Core Core (%) (%)

Area 21.1mm2 2.5mm2 0.14mm2 0.7 5.6
TDP ≈5W ≈1W 18mW 0.4 1.8

Table 4: Comparing two popular cores to the transceiver plus
two antennas (T+2A), all at 22 nm.

Overall, we see that the transceiver and two antennas have
a small footprint. They account for 0.7% of the area and
0.4% of the power of a Haswell core, and 5.6% of the area
and 1.8% of the power of an Atom core.

7.2 Barrier Synchronization Evaluation
We first evaluate the performance of the different barrier
configurations using TightLoop, which represents a very de-
manding environment. Figure 7 shows the number of cycles
that each iteration of the loop takes on the different architec-
ture configurations as we change the number of cores from
16 to 256. Note that the Y-axis in this plot and most of the
others is logarithmic.

16 32 64 128 256
10

2

10
3

10
4

10
5

10
6

10
7

Number of Cores

E
x
e
c
u

ti
o

n
 T

im
e

(c
y
c
le

s
/i
te

ra
ti

o
n

)

Baseline

Baseline+

WiSyncNoT

WiSync

Figure 7: Execution time of TightLoop on different architec-
ture configurations. Note that the Y-axis is logarithmic.

16 64 256 1024 4096 16384
10

3

10
4

10
5

10
6

10
7

Vector Length

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

Baseline

Baseline+

WiSyncNoT

WiSync

(a) Loop 2 for 64 cores

16 64 256 1024 4096 16384
10

3

10
4

10
5

10
6

Vector Length

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

(b) Loop 3 for 64 cores

16 32 64 128 256 512 1024 2048
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Vector Length

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

(c) Loop 6 for 64 cores

16 64 256 1024 4096 16384
10

3

10
4

10
5

10
6

10
7

Vector Length

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

(d) Loop 2 for 128 cores

16 64 256 1024 4096 16384
10

3

10
4

10
5

10
6

Vector Length

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

(e) Loop 3 for 128 cores

16 32 64 128 256 512 1024 2048
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Vector Length

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

(f) Loop 6 for 128 cores

Figure 8: Execution time of Livermore loops on different architecture configurations for several vector sizes and core counts.

The figure shows a large difference between the config-
urations, especially for high core counts. As we increase
the core count, the execution time of WiSync remains low,
thanks to the Tone channel. WiSync’s execution time is
about one order of magnitude lower than Baseline+ (which
uses a Tournament barrier). It is two to three orders of mag-
nitude lower than Baseline.

WiSyncNoT takes 2–6x longer than WiSync to execute
because of collisions in the Data channel. Hence, the Tone
channel is useful for barrier-intensive codes. Still, WiSync-
NoT’s execution time is 2x–4x lower than Baseline+.

Figure 8 shows the execution time of Livermore loops 2,
3, and 6 on the different architecture configurations as we
change the vector length. The top and bottom plots corre-
spond to 64-core and 128-core executions, respectively.

Starting with the three upper plots, we see that WiSync-
NoT and WiSync are several times faster than Baseline+,
and two orders of magnitude faster than Baseline. The gains
are highest with small vector lengths, where the overhead of
the barrier relative to the computation is most significant. As
the vector lengths increase, the computation time becomes
higher, and the barrier time (including any collisions) be-
comes relatively less important. As a result, Baseline+ tends
to get closer to WiSyncNoT and WiSync. This is especially
the case for Loop 6, which has a large loop body.

We see that WiSync is significantly faster than WiSync-
NoT in Loop 2 for modest problem sizes. The reason is sim-
ilar to that in TightLoop: a burst of arrivals causes collisions
in the Data channel in WiSyncNoT which, due to the mod-
est duration of the loop, have a significant impact on latency.
WiSync eliminates the collisions by using the Tone channel.

If we examine the lower plots, we see a wider gap be-
tween Baseline and the rest of configurations for 128 cores.
The difference between WiSync, WiSyncNoT, and Base-
line+ follows similar trends as for 64 cores.

Overall, we conclude that, while WiSync’s Data channel
does well across the board, the Tone channel is even better
for some workloads.

7.3 CAS Synchronization Evaluation
We now consider kernels with CAS operations and compare
executions using the wireless network and using conven-
tional systems. Since these kernels involve lock-free struc-
tures and do not use barriers, the results are independent of
the lock and barrier implementation. Consequently, we sim-
ply compare WiSync (where CASes use the BM) to Baseline
(where CASes use the cache hierarchy).

Figure 9 shows the throughput of the FIFO, LIFO, and
ADD CAS kernels on the two architecture configurations as
we change the number of instructions that a given processor
executes between consecutive CASes. This is shown in the
X-axes as critical section size, and small numbers are to the
right. The plots show the number of successful CASes per
1,000 cycles. The top and bottom plots correspond to 64-
core and 128-core executions, respectively.

The figures show that WiSync is able to attain a much
higher CAS throughput than a conventional architecture. For
64 cores, there is little or no difference between the architec-
tures when the number of instructions between CASes is 8-
16K or larger. However, the difference increases as the crit-
ical section becomes smaller and contention rises. By the
time we have about 2K instructions, WiSync delivers a CAS
throughput that is about one order of magnitude higher than
Baseline. With 128 cores, at about 4K instructions in the
critical section, WiSync delivers a one order of magnitude
higher CAS throughput than Baseline.

7.4 Full Application Evaluation
We now consider the entire PARSEC and SPLASH-2 ap-
plication suites running with 64 cores. Figure 10 shows the
speedup of Baseline+, WiSyncNoT, and WiSync over the
Baseline architecture for all the applications. The two right-

416642561K4K16K64K
0.1

1

10

100

Size of Critical Section (instructions)

C
A

S
 T

h
ro

u
g

h
p

u
t

(p
e

r
1

0
0

0
 c

y
c

le
s

)

Baseline

WiSync

(a) FIFO for 64 cores

416642561K4K16K64K
0.1

1

10

100

Size of Critical Section (instructions)

C
A

S
 T

h
ro

u
g

h
p

u
t

(p
e

r
1

0
0

0
 c

y
c

le
s

)

(b) LIFO for 64 cores

416642561K4K16K64K
0.1

1

10

100

Size of Critical Section (instructions)

C
A

S
 T

h
ro

u
g

h
p

u
t

(p
e

r
1

0
0

0
 c

y
c

le
s

)

(c) ADD for 64 cores

416642561K4K16K64K
0.1

1

10

100

Size of Critical Section (instructions)

C
A

S
 T

h
ro

u
g

h
p

u
t

(p
e

r
1

0
0

0
 c

y
c

le
s

)

(d) FIFO for 128 cores

416642561K4K16K64K
0.1

1

10

100

Size of Critical Section (instructions)

C
A

S
 T

h
ro

u
g

h
p

u
t

(p
e

r
1

0
0

0
 c

y
c

le
s

)

(e) LIFO for 128 cores

416642561K4K16K64K
0.1

1

10

100

Size of Critical Section (instructions)

C
A

S
 T

h
ro

u
g

h
p

u
t

(p
e

r
1

0
0

0
 c

y
c

le
s

)

(f) ADD for 128 cores

Figure 9: CAS throughput of three kernels on different architecture configurations for several critical section sizes and core
counts. In the charts, higher is better.

0

0.5

1

1.5

2

2.5

bl
ac

ks
ch

ol
es

 b

od
yt
ra

ck

ca
nn

ea
l

 d
ed

up

fa
ce

si
m

 fe
rre

t

 fl
ui
da

ni
m

at
e

 f

re
qm

in
e

st
re

am
cl
us

te
r

 s
w
ap

tio
ns

vi
ps

x2

64

 b
ar

ne
s

 c

ho
le
sk

y

 ff

t

 fm

m

lu
−c

 l
u−

nc

oc
ea

n−
c

 o

ce
an

−n
c

 ra

di
os

ity

 r
ad

ix

 r

ay
tra

ce

vo
lre

nd

 w

at
er

−n
s

 w

at
er

−s
p

m

ea
n

ge
oM

ea
n

S
p

e
e

d
u

p

Baseline+

WiSyncNoT

WiSync

5.91

5.953.64 3.08

2.98

Figure 10: Speedup of different architecture configurations over Baseline running PARSEC and SPLASH-2 for 64 cores.

most set of bars show the arithmetic and the geometric mean,
respectively.

Based on the geometric mean, WiSync delivers an aver-
age speedup of 1.23 over Baseline. Moreover, compared
to the more advanced Baseline+ design that uses MCS
locks and Tournament barriers, WiSync delivers an aver-
age speedup of 1.12. These are significant improvements.
We also see that WiSyncNoT performs on average about the
same as WiSync. This is because the wireless Data channel
is not very utilized in these applications.

WiSync speeds-up about nine applications. The others
have too little synchronization for WiSync to make a differ-
ence. WiSync shows its best gains in applications that fre-
quently use barriers, such as streamcluster (speedup close to
6) and ocean. In addition, significant speedups are also at-
tained in a few lock-intensive applications such as raytrace
(speedup close to 3) and radiosity. Many applications do not
use fine-grain synchronization and, therefore, the improve-
ments of WiSync make little difference.

Baseline+ shows low speedups in some applications. This
is due to the overhead of its more sophisticated synchroniza-
tion implementations.

In dedup and fluidanimate, the locks did not fit in the BM,
and we transparently allocated a fraction of the locks in plain
memory. However, simulations with an infinitely large BM
did not yield any further speedup.

To understand these results better, Table 5 shows the
percentage of the cycles in which WiSyncNoT and WiSync
use the Data channel. We show data for the most demanding
applications and the geometric mean of all the applications.
From these numbers, we see that, on average, WiSyncNoT
and WiSync use the Data channel for 0.2% and 0.1% of the
time, respectively. Both utilizations are very low. WiSync’s
utilization is lower because barrier synchronization uses the
Tone channel. In addition, there is little contention. It can
be shown that, on average, the latency of a Data channel
transfer in WiSyncNoT and WiSync is 9.8 and 5.6 cycles,
respectively. Overall, for WiSync to deliver larger speedups,
we need applications that use the wireless network more.

7.5 Sensitivity Study
To study the impact of the memory and network latencies
on these speedups, we perform a sensitivity study with the
configuration variants shown in Table 6. Default is the con-

Str Rad W/ns Flu Ray Oc/c Oc/nc GM

WT 3.0 2.1 2.0 1.8 1.6 0.8 0.7 0.2
W 0.0 2.1 2.0 1.8 1.6 0.3 0.2 0.1

Table 5: Utilization of the Data channel in WiSyncNoT
(WT) and WiSync (W) in % of the total cycles for the most
demanding applications. GM is the geometric mean of all the
applications.
figuration we have used so far. SlowNet and FastNet increase
and decrease, respectively, the network hop latency by two
cycles. SlowNet+L2 additionally makes the L2 cache slower.
Finally, SlowBMEM makes the BM two cycles slower.

Configuration L2 RT BM RT Net. Hop Lat.
(Cycles) (Cycles) (Cycles)

Default 6 2 4
SlowNet 6 2 6
SlowNet+L2 12 2 6
FastNet 6 2 2
SlowBMEM 6 4 4

Table 6: Memory and network configuration variants.
Figure 11 shows the geometric mean speedups of Base-

line+, WiSyncNoT, and WiSync over Baseline for the differ-
ent configurations. The results correspond to 64-core execu-
tions. We see that the speedups of WiSync and WiSyncNoT
are higher when the on-chip network is slower, and lower
when the network is faster. This is because Baseline (and
Baseline+) locks and barriers are sensitive to network la-
tency. The impact of the L2 latency is marginal, since all
architectures are affected noticeably. Finally, the BM latency
barely affects the performance of WiSync and WiSyncNoT,
at least for the range considered.

Default SlowNet SlowNet+L2 FastNet SlowBMEM
1

1.05

1.1

1.15

1.2

1.25

1.3

S
p

e
e
d

u
p

Baseline+

WiSyncNoT

WiSync

Figure 11: Impact of different memory and network variants
on the speedups over Baseline for 64 cores.

8. Related Work
Special hardware support for synchronization. Advanced
hardware for synchronization is an active research area
(e.g. [5, 7, 12, 15, 25, 26, 37, 38, 40, 53]). Many designs use
some form of synchronization in memory or directory, such
as the Cray T3E E-registers [38], the SGI Origin fetch-and-Φ
operations [25], the buffer of full-empty bit flags in memory
banks [53], and the MiSAR on-chip synchronization accel-
erator [26] to name a few. However, very few designs have
ever provided broadcast capabilities, as WiSync does. Per-
haps the closest support is Blue Gene/L’s network for collec-

tives, broadcast, and reduction [15]. Many designs have op-
timized barriers, which also include a broadcast step. Some
examples are the barrier network in Cray T3D [12], cache
coherence protocol optimizations [37], special interconnect
hardware for barriers [7], and wired-NOR logic [40].
Transmission Lines (TLs). TLs can provide on-chip broad-
cast [4, 5, 10, 33, 34, 41, 43]. As a result, they have been used
for synchronization. For example, our Tone barrier is in-
spired in the TLSync TL barrier [33], which also uses tones.
Abellan et al. [4, 5] implement locks and barriers using TLs,
as they broadcast signals over these TLs. Other designs use
TLs for a variety of broadcast networks [10, 34, 43].
Nanophotonics. The transmission of optical signals through
nanophotonic waveguides can provide broadcast [21, 23,
46, 47]. Nanophotonics has been proposed for a variety of
network architectures [6, 42]. Some proposals use it for on-
chip broadcast [21, 23, 46]. Vantrease et al. [47] design a
novel form of cache coherence using optical waveguides.

Compared to wireless networks, TLs and nanophotonics
are more energy efficient and provide higher bandwidth den-
sity. Both advantages are due to the fact that energy is guided
rather than radiated. Higher bandwidths can be attained by
including several channels within the same link, or by repli-
cating links as in conventional on-chip networks.

On the other hand, network design using TLs and nanopho-
tonics becomes more complex and less scalable than with
wireless. They are more complex because both require lay-
ing down on the chip a physical infrastructure that intercon-
nects the nodes. TLs are less scalable because they suffer
from signal reflections as we connect more nodes to the TL.
This requires using amplifying stages between TL segments.
Nanophotonics are less scalable due to their laser power
needs. Light is modulated by the transmitter and then guided
to all the receivers, which extract a fraction of the light each.
This causes losses, and requires a high laser power for large
destinations sets.

9. Conclusion
This paper proposed to address the challenge of supporting
frequent communication due to fine-grain synchronization
using on-chip wireless communication. Our architecture,
called WiSync, uses a per-core Broadcast Memory (BM).
When a core writes to its BM, all the other 100+ BMs get
updated in less than 10 processor cycles. In addition to the
Data channel for data communication, WiSync proposes the
cheap Tone channel, to execute barriers very efficiently. With
WiSync, a manycore supports multiprogramming, virtual
memory, context switching and, except if the Tone chan-
nel is used, process migration. Our evaluation with simula-
tions of 128-threaded kernels and 64-threaded applications
showed that WiSync speeds-up synchronization substan-
tially. Compared to using advanced conventional synchro-
nization, WiSync achieved an average speedup of nearly one
order of magnitude for the kernels, and 1.12 for the PARSEC
and SPLASH-2 applications.

References
[1] S. Abadal, E. Alarcón, M. C. Lemme, M. Nemirovsky, and

A. Cabellos-Aparicio. Graphene-enabled Wireless Commu-
nication for Massive Multicore Architectures. IEEE Commu-
nications Magazine, 51(11):137–143, 2013.

[2] S. Abadal, M. Iannazzo, M. Nemirovsky, A. Cabellos-
Aparicio, and E. Alarcón. On the Area and Energy Scalability
of Wireless Network-on-Chip: A Model-based Benchmarked
Design Space Exploration. IEEE/ACM Transactions on Net-
working, 23(5):1, 2015.

[3] S. Abadal, B. Sheinman, O. Katz, O. Markish, D. Elad,
Y. Fournier, D. Roca, M. Hanzich, G. Houzeaux, M. Ne-
mirovsky, E. Alarcón, and A. Cabellos-Aparicio. Broadcast-
Enabled Massive Multicore Architectures: A Wireless RF Ap-
proach. IEEE MICRO, 35(5):52–61, 2015.

[4] J. L. Abellán, J. Fernández, and M. E. Acacio. GLocks:
Efficient Support for Highly-contended Locks in Many-core
CMPs. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, pages 893–905, May
2011.

[5] J. L. Abellán, J. Fernández, and M. E. Acacio. Efficient Hard-
ware Barrier Synchronization in Many-Core CMPs. IEEE
Transactions on Parallel and Distributed Systems, 23(8):
1453–1466, 2012.

[6] C. Batten, A. Joshi, V. Stojanovic, and K. Asanovic. De-
signing Chip-Level Nanophotonic Interconnection Networks.
IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 2(2):137–153, 2012.

[7] C. Beckmann and C. Polychronopoulos. Fast Barrier Synchro-
nization Hardware. Proceedings of Supercomputing, Novem-
ber 1990.

[8] S. Benedetto and E. Biglieri. Principles of Digital Transmis-
sion with Wireless Applications. Springer Science and Busi-
ness Media, 1999.

[9] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC Bench-
mark Suite: Characterization and Architectural Implications.
In Proceedings of the 17th International Conference on Par-
allel Architectures and Compilation Techniques, pages 72–81,
October 2008.

[10] A. Carpenter, J. Hu, O. Kocabas, M. Huang, and H. Wu. En-
hancing Effective Throughput for Transmission Line-based
Bus. In Proceedings of the 39th Annual International Sympo-
sium on Computer Architecture, pages 165–176, June 2012.

[11] M. F. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman,
E. Socher, and S.-W. Tam. CMP Network-on-Chip Overlaid
With Multi-Band RF-Interconnect. In Proceedings of the 14th
International Symposium on High Performance Computer Ar-
chitecture, pages 191–202, February 2008.

[12] Cray Research Inc. CRAY T3D System Architecture
Overview, 1993.

[13] S. Deb, A. Ganguly, P. P. Pande, B. Belzer, and D. Heo. Wire-
less NoC as Interconnection Backbone for Multicore Chips:
Promises and Challenges. IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, 2(2):228–239, 2012.

[14] S. Deb, K. Chang, X. Yu, S. Sah, M. Cosic, P. P. Pande,
B. Belzer, and D. Heo. Design of an Energy Efficient CMOS

Compatible NoC Architecture with Millimeter-Wave Wire-
less Interconnects. IEEE Transactions on Computers, 62(12):
2382–2396, 2013.

[15] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D.
Steinmacher-Burow, T. Takken, and P. Vranas. Overview of
the Blue Gene/L System Architecture. In IBM Journal of Re-
search and Development, March/May 2005.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach, Fifth Edition. Morgan Kaufmann,
2012.

[17] Intel Corporation. Intel Products. ark.intel.com, 2015.

[18] C. H. Jan, M. Agostinelli, H. Deshpande, M. a. El-Tanani,
W. Hafez, U. Jalan, L. Janbay, M. Kang, H. Lakdawala, J. Lin,
Y. L. Lu, S. Mudanai, J. Park, A. Rahman, J. Rizk, W. K.
Shin, K. Soumyanath, H. Tashiro, C. Tsai, P. VanDerVoorn,
J. Y. Yeh, and P. Bai. RF CMOS Technology Scaling in High-
k/Metal Gate Era for RF SoC (System-on-Chip) Applications.
In Proceedings of the IEEE International Electron Devices
Meeting, pages 604–607, December 2010.

[19] S. Kaya, S. Laha, A. Kodi, D. Ditomaso, D. Matolak, and
W. Rayess. On Ultra-short Wireless Interconnects for NoCs
and SoCs: Bridging the THz Gap. In Proceedings of the
IEEE 56th International Midwest Symposium on Circuits and
Systems, pages 804–808, August 2013.

[20] B. Khamaisi, S. Jameson, and E. Socher. A 210–227 GHz
Transmitter With Integrated On-Chip Antenna in 90 nm
CMOS Technology. IEEE Transactions on Terahertz Science
and Technology, 3(2):141–150, 2013.

[21] N. Kirman, M. Kirman, R. Dokania, J. F. Martinez, A. B.
Apsel, M. A. Watkins, and D. H. Albonesi. Leveraging Op-
tical Technology in Future Bus-based Chip Multiprocessors.
In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 492–503, December
2006.

[22] T. Krishna, L. Peh, B. Beckmann, and S. K. Reinhardt. To-
wards the Ideal On-chip Fabric for 1-to-many and Many-to-1
Communication. In Proceedings of the 44th Annual Inter-
national Symposium on Microarchitecture, pages 71–82, De-
cember 2011.

[23] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. Kimerling, and A. Agarwal. ATAC: A 1000-Core Cache-
Coherent Processor with On-Chip Optical Network. In Pro-
ceedings of the 19th international conference on Parallel
Architectures and Compilation Techniques, pages 477–488,
September 2010.

[24] S. Laha, S. Kaya, D. W. Matolak, W. Rayess, D. DiTomaso,
and A. Kodi. A New Frontier in Ultralow Power Wire-
less Links: Network-on-Chip and Chip-to-Chip Interconnects.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 34(2):186–198, 2015.

[25] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In International Symposium on Com-
puter Architecture (ISCA), June 1997.

[26] C.-K. Liang and Milos Prvulovic. MiSAR: Minimalistic Syn-
chronization Accelerator with Resource Overflow Manage-
ment. In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture, pages 414–426, June 2015.

[27] B.-H. Lim and A. Agarwal. Reactive Synchronization Algo-
rithms for Multiprocessors. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, November 1994.

[28] O. Markish, B. Sheinman, O. Katz., D. Corcos, and D. Elad.
On-chip mmWave Antennas and Transceivers. In Proceedings
of the 9th IEEE/ACM International Symposium on Networks
on Chip, September 2015.

[29] D. Matolak, A. Kodi, S. Kaya, D. DiTomaso, S. Laha, and
W. Rayess. Wireless Networks-on-Chips: Architecture, Wire-
less Channel, and Devices. IEEE Wireless Communications,
19(5), 2012.

[30] F. H. McMahon. The Livermore Fortran Kernels: A Computer
Test Of The Numerical Performance Range. Technical report,
Lawrence Livermore National Laboratory, 1986.

[31] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
Scalable Synchronization on Shared-memory Multiproces-
sors. ACM Transactions on Computer Systems, 9(1):21–65,
1991.

[32] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet
Switching for Local Computer Networks. Communications of
the ACM, 19(7):395–404, 1976.

[33] J. Oh, A. Zajic, and M. Prvulovic. TLSync: Support for
Multiple Fast Barriers Using On-chip Transmission Lines. In
Proceedings of the 38th Annual International Symposium on
Computer Architecture, pages 105–115, June 2011.

[34] J. Oh, A. Zajic, and M. Prvulovic. Traffic Steering Between
a Low-latency Unswitched TL Ring and a High-throughput
Switched On-chip Interconnect. In Proceedings of the 22nd
International conference on Parallel Architectures and Com-
pilation Techniques, pages 309–318, September 2013.

[35] J.-D. Park, S. Kang, S. Thyagarajan, E. Alon, and A. Nikne-
jad. A 260 GHz Fully Integrated CMOS Transceiver for
Wireless Chip-to-chip Communication. In Proceedings of the
IEEE Symposium on VLSI Circuits, pages 48–49, June 2012.

[36] T. S. Rappaport, J. N. Murdock, and F. Gutierrez. State
of the Art in 60-GHz Integrated Circuits and Systems for
Wireless Communications. Proceedings of the IEEE, 99(8):
1390–1436, 2011.

[37] J. Sampson, R. González, J. F. Collard, N. P. Jouppi,
M. Schlansker, and B. Calder. Exploiting Fine-grained Data
Parallelism with Chip Multiprocessors and Fast Barriers. In
Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 235–246, December
2006.

[38] S. Scott. Synchronization and Communication in the T3E
Multiprocessor. In International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), October 1996.

[39] E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao,
W. Knap, and K. K. O. Progress and Challenges towards

Terahertz CMOS Integrated Circuits. IEEE Journal of Solid-
State Circuits, 45(8):1554–1564, 2010.

[40] S. Shang and K. Hwang. Distributed Hardwired Barrier
Synchronization for Scalable Multiprocessor Clusters. IEEE
Transactions on Parallel and Distributed Systems, 6(6):591–
605, 1995.

[41] E. Socher and M.-C. F. Chang. Can RF Help CMOS Pro-
cessors? IEEE Communications Magazine, 45(8):104–111,
2007.

[42] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S.
Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis,
S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki,
H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović,
R. J. Ram, M. A. Popović, and V. M. Stojanović. Single-chip
Microprocessor that Communicates Directly Using Light. Na-
ture, 528(7583):534–538, 2015.

[43] G. Sun, S.-H. Weng, C.-K. Cheng, B. Lin, and L. Zeng. An
On-chip Global Broadcast Network Design with Equalized
Transmission Lines in the 1024-core Era. In Proceedings
of the International Workshop on System Level Interconnect
Prediction, pages 11–18, June 2012.

[44] R. Ubal, P. Mistry, D. Schaa, H. Ave, and D. Kaeli.
Multi2Sim: A Simulation Framework for CPU-GPU Com-
puting. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, pages
335–344, September 2012.

[45] M. Uzunkol and G. M. Rebeiz. A Low-Loss 50-70 GHz SPDT
Switch in 90 nm CMOS. IEEE Journal of Solid-State Circuits,
45(10):2003–2007, 2010.

[46] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren,
N. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. Beau-
soleil, and J. Ahn. Corona: System Implications of Emerging
Nanophotonic Technology. In Proceedings of the 35th Inter-
national Symposium on Computer Architecture, June 2008.

[47] D. Vantrease, M. H. Lipasti, and N. Binkert. Atomic Coher-
ence: Leveraging Nanophotonics to Build Race-free Cache
Coherence Protocols. In Proceedings of the 17th Interna-
tional Symposium on High Performance Computer Architec-
ture, pages 132–143, February 2011.

[48] Z. Wang, P. Y. Chiang, P. Nazari, C. C. Wang, Z. Chen, and
P. Heydari. A CMOS 210-GHz Fundamental Transceiver with
OOK Modulation. IEEE Journal of Solid-State Circuits, 49
(3):564–580, 2014.

[49] N. Weissman and E. Socher. 9mW 6Gbps Bi-directional 85–
90GHz Transceiver in 65nm CMOS. In Proceedings of the 9th
European Microwave Integrated Circuits Conference, pages
25–28, October 2014.

[50] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. ACM SIGARCH Computer Architecture
News, 23(2):24–36, 1995.

[51] X. Yu, J. Baylon, P. Wettin, D. Heo, P. Pande, and S. Mirab-
basi. Architecture and Design of Multi-Channel Millimeter-
Wave Wireless Network-on-Chip. IEEE Design & Test, 31(6):
19–28, 2014.

[52] X. Yu, H. Rashtian, and S. Mirabbasi. An 18.7-Gb/s 60-GHz
OOK Demodulator in 65-nm CMOS for Wireless Network-
on-Chip. IEEE Transactions on Circuits And Systems -I:
Regular Papers, 62(3):799–806, 2015.

[53] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao. Synchroniza-
tion State Buffer: Supporting Efficient Fine-grain Synchro-
nization on Many-core Architectures. In Proceedings of the
34th Annual International Symposium on Computer Architec-
ture, pages 35–45, June 2007.

	Introduction
	Background
	Overview of WiSync
	Main Idea
	WiSync Architecture

	WiSync Architecture
	Organization of the Wireless Transfer
	B-Memory Operation and Interface
	Interface to Basic BM Instructions
	Interface to Tone Channel Instructions

	Supporting Synchronization Operations
	Basic Read-Modify-Write Primitives
	Barriers Using the Data Channel
	Tone Barriers
	Producer-Consumer Operation
	Reduction and Multicast/Broadcast

	BM Entry Allocation and Protection

	Implementation Issues
	Sharing the Tone Channel
	Context Switching and Thread Migration
	Adaptively Dealing with Contention

	Evaluation Environment
	Evaluation
	Area and Power Comparison
	Barrier Synchronization Evaluation
	CAS Synchronization Evaluation
	Full Application Evaluation
	Sensitivity Study

	Related Work
	Conclusion

