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Abstract—Deep Neural Networks have flourished at an un-
precedented pace in recent years. They have achieved outstanding
accuracy in fields such as computer vision, natural language
processing, medicine or economics. Specifically, Convolutional
Neural Networks (CNN) are particularly suited to object recogni-
tion or identification tasks. This, however, comes at a high compu-
tational cost, prompting the use of specialized GPU architectures
or even ASICs to achieve high speeds and energy efficiency.
ASIC accelerators streamline the execution of certain dataflows
amenable to CNN computation that imply the constant movement
of large amounts of data, thereby turning on-chip communication
into a critical function within the accelerator. This paper studies
the communication flows within CNN inference accelerators
of edge devices, with the aim to justify current and future
decisions in the design of the on-chip networks that interconnect
their processing elements. Leveraging this analysis, we then
qualitatively discuss the potential impact of introducing the novel
paradigm of wireless on-chip network in this context.

I. INTRODUCTION

The last decade has witnessed an explosive growth in the
development of Neural Network (NN) algorithms both in
industry and academia. Convolutional Neural Networks (CNN)
are one of the most successful NNs for popular applications
such as image classification [1], [2], pose estimation [3]
or autonomous driving [4], among others. CNNs have been
improving their performance over the last years, in part by
means of making the NNs larger and deeper, which allowed
them to suit more complex forms of data in their design.
The expansion of these networks, often called Deep Neural
Networks (DNN), means that they can nowadays reach sizes
of millions of parameters [2] in some cases, which inevitably
causes a huge computational expense.

As a consequence, the hardware choice to run the inference
of those algorithms has evolved to match the new requirements.
While CPUs provide flexibility and GPUs later offered mass
parallelization, they are not specialized hardware for running
DNNs and their performance per watt can be improved.
Moreover, the processing of DNNs is already shifting from the
cloud to the edge, hence leading to their wide deployment
in devices such as smart home assistants, IoT sensors or
autonomous cars. These devices are constrained by strict
power envelopes limiting the available hardware resources [5].
Therefore, highly tuned architectures specialized for DNNs are
required. Such specialized hardware is generally referred to as
DNN accelerators and essentially consists of ASIC architectures

This work is supported by the grant H2020-863337-WIPLASH.

optimized for running large NNs. Several accelerators aiming at
ML inference have been released recently [6], [7], [8], including
novel ideas to boost their efficiency.

In DNN accelerators, the computational resources are of
utmost importance, but the communication is essential as well.
For instance, in order to efficiently map the NN workloads in
the accelerator, data movement is typically leveraged to reuse
or parallelize certain computations, which leads to different
dataflows or mapping strategies. Even though data movement
is argued to be much less affordable than computation [6],
most of the designs are focusing on the latter and setting aside
the communications, leading to bottlenecks or non-scalable
designs. The DNN model dictates the reuse opportunities that
can be exploited inside an accelerator. This depends on the
data movement, which will be ruled by a dataflow. Moreover,
different NN sizes imply unalike data movement inside an
accelerator, which requires varying data reuse strategies.

The dataflow space is huge. Therefore, exploring it is a time
consuming and critical task towards taking full advantage of the
hardware resources with the maximum efficiency. Consequently,
a deep understanding on how these communication approaches
affect the computational throughput and runtime of the entire
accelerator is needed. Characterizing the requirements of such
NNs becomes, then, essential to understand the impact of the
interconnects in the accelerator.

When interconnecting the processing elements of the accel-
erator among them and with the memory, Networks-on-Chip
(NoC) are currently used. For instance, Eyeriss [6] employed
hierarchical buses, and MAERI employed a fat-tree and a novel
reduction tree [8]. To deliver the data as the dataflow dictates
without bottlenecks, NoCs need to be efficient and, as we will
see, flexible. However, NoCs are starting to lag behind and show
some limitations, especially when the number of cores increases,
as it is happening in general manycore systems [9]. In order to
solve this problem, the research community has introduced a
novel interconnect paradigm, the Wireless Networks-on-Chip
(WNoC), which can address some of the issues traditional NoCs
have. Since DNN accelerators are in essence manycore systems,
some advantages can be found if we introduce WNoCs in them.
However, prior work has to be done in order to find the precise
dataflows that would benefit from the unique characteristics of
WNoCs in DNN accelerators.

In this work, we characterize the NoC bandwidth require-
ments and the impact of NoC bandwidth on performance in five
dataflows and state-of-the-art workloads [5], [10]. Precisely,
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we target inference accelerators on edge devices, where this
performance analysis is particularly relevant due to their
inherent hardware constraints. We then explore the design
space under these scenarios and reason about the strengths and
potential usability of WNoCs in DNN accelerators.

The rest of this paper is organized as follows. Section
II provides background about DNN accelerators, Section III
discusses the design space, Section IV presents characterization
results, Section V discusses WNoCs, and Section VI concludes.

II. BACKGROUND

Since CNN is one the most dominant NN class in deploy-
ment, most of DNN accelerators focus on CNNs. Therefore,
we also focus on CNNs in this paper.

In CNNs, the vast majority of the layers are convolutional
(CONV) layers [11], which essentially perform a discrete
convolution operation between the input and the filters or
kernels, as Figure 1 shows. As a consequence, several designs
are using spatial architectures that can take advantage of it to
handle efficiently such computations in a tailored manner.
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for(n=1; n=N; n++)
for(k=1; k=K; k++)
for(c=1; c=C; c++)
for(y=1; y=Y; y++)
for(x=1; x=X; x++)
for(r=1; r=R; r++)
for(s=1; s=S; s++)

O[n][k][y-r][x-s] += 
W[k][c][r][s]*I[n][c][y][x]

Fig. 1: Convolution operation

Generally, a DNN accelerator is composed of a memory, an
array of Processing Elements (PEs) and a NoC to interconnect
the PEs and memory. The PEs fetch inputs and weights from
the memory to compute a convolution operation (i.e. multiply
and accumulate, MAC), and then send the outputs back to
memory. The different strategies to sequentially map the NN
parameters into the PEs are called dataflows.

When mapping the different dimensions of the NN layers
into the PEs, we can spatially or temporally map each of them,
in different orders and sizes, to define our dataflow. When
temporally mapping the data, we iterate in time the different
values of such dimension in a PE, while when spatially mapping
a dimension, we send the different values to different PEs in
our PE array. For instance, dataflows that spatially map the
largest dimension of a specific layer will tend to work better
in that layer since they facilitate its parallelism.

We can express the dimension space of the convolution
operation as a 7D nested for loop, exemplified in Figure 1.
Loop transformations on the 7D loop such as loop interchange
and loop tiling lead to completely different dataflow styles,
which significantly affects the performance and efficiency
of accelerators. Different dataflows lead to reuse patterns
described in Figure 2 and parallelism opportunities whose
amount depends on NN layer shapes. DNN accelerators exploit
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Fig. 2: Three data reuse patterns in accelerators. Temporal reuse is
data staging in a buffer within a single PE, spatial reuse is replication
over wires (multicast) at the same time, and spatio-temporal reuse is
data forwarding from a PE to another PE (e.g., PE0 forwarded data
0 to PE1 in (c))
such opportunities using their available hardware resources:
spatial reuse requires multicast ability in the NoC, temporal
reuse requires memory hierarchy, and spatio-temporal reuse
requires neighbor to neighbor links.

Depending on the temporal data reuse patterns, the following
taxonomy was introduced [6]:
• Weight Stationary (WS): WS dataflow refers to a

dataflow style that temporally reuses filter weight values
in each PE. That is, filter weight mapping over each PE
changes in the most slowest manner than other tensors.
NVDLA dataflow style [12] is a variant of it.

• Output Stationary (OS): OS dataflow style tries to
accumulate as many partial sums within a PE over time
as to reduce the output collection traffic and its cost.
ShiDiannao [13] implements a version of OS dataflow.

• Row Stationary (RS): RS dataflow style maps an output
row on a set of PEs and accumulates outputs within the
row over time. RS dataflows spatially reuse filter weight
and input activation values and temporally reuse output
values across a set of PEs (or, accumulate a full output
across a set of PEs). Eyeriss [6] implements it.

• No Local Reuse (NLR): NLR dataflow does not keep
any data stationary, which extremely minimizes buffer
sizes but heavily relies on the NoC to move data.

Dataflow choices result in different traffic patterns thus
requiring different NoC bandwidth, multicast ability, among
others. For example, ShiDiannao [13] dataflow requires weight
broadcasting and input multicast while NLR dataflow in Table I
unicasts both of weight and input. However, unicasting dataflow
is not always worse than broadcasting dataflow. The efficiency
of dataflows depends on the layer type and shape and the
amount of available hardware resources. That is, each of
dataflow styles has strengths and weaknesses, and understand-
ing them is essential to design an efficient accelerator.

III. METHODOLOGY

In order to evaluate the performance of the different dataflows
and characterize their bandwidth requirements, we use MAE-
STRO [14], an open-source analytical cost model. MAESTRO
takes three sets of inputs: Dataflow, DNN model, and hardware
descriptions written in a specification language. Analyzing
data reuse based on the three sets of inputs, MAESTRO
reports various performance and cost information in layer and
network granularity, which includes total latency, buffer access
counts, energy consumption, NoC bandwidth requirements,



buffer requirements, and others. MAESTRO supports not only
fundamental DNN operators such as CONV2D and FC, but
also modern DNN operators such as depth-wise convolution
or transposed convolution.

DNN Workloads. We characterize the impact of NoC
bandwidth on performance using MobileNetV2 [5] and
ResNet50 [10] since they provide state-of-the-art efficiency
and accuracy for classification applications and include various
layer types and shapes. For layer types, or DNN operators,
MobileNetV2 includes CONV2D, depth-wise convolution and
point-wise convolution. Resnet50 includes CONV2D, FC, point-
wise convolution, and identity mapping (residual links). For
layer shape, like other classification DNN models, early layers
have high resolution (large) activation and shallow filter (small
number of input and output channels), and late layers have
low resolution (small) activation and deep filter (large number
of input and output channels).

Characterized Dataflows. Table I summarizes the specifi-
cations of five dataflow styles we characterize. Three dataflow
styles are based on real accelerators (ShiDiannao [13], Ey-
eriss [6], and NVDLA [12] styles) and other two dataflow
styles are synthetic dataflows: no-local-reuse (NLR) and weight-
stationary (WS). As shown in Table I, the five characterized
dataflow styles have diverse data reuse strategies, temporal and
spatial reuse, loop order, and tile sizes.

Hardware Parameters. We target accelerators in edge
devices in this work and set up the hardware parameters
accordingly. We model an accelerator with 256 PEs and 256KB
SRAM in total for shared global buffer in the accelerator, as
well as local buffers in each PE. We vary the NoC bandwidth
from 4B/cycle to 256B/cycle, which translates into 4GB/s to
256GB/s bandwidth range in an accelerator with 1GHz clock.
We enable multicasting of NoC to enable spatial reuse.

IV. CHARACTERIZATION RESULTS

We present the impact of NoC bandwidth on throughput
and bandwidth requirement over Resnet50 and MobileNetV2
in Figure 3 and Figure 4. We classify each layer of the DNN
models into five classes: early layer, point-wise convolution,
fully-connected layer, residual links, and late layers. We observe
that each dataflow provides different roofline thoughputs and
requires different NoC bandwidth.

Roofline Throughput. Roofline throughput depends on the
maximum degree of parallelization in a given set of target layer
dimension, dataflow, and PE array size. First, when the dataflow
parallelizes over a layer dimension smaller than number of PEs,
PEs can be underutilized. For example, NLR dataflow style
parallelizes over input channel dimension. When we run an
early layer with only three channels (e.g., CONV1 in Resnet50),
only three PEs can be utilized so the maximum throughput is
three MACs per cycle.

Also, when the number of PEs does not cover the entire
parallelized dimension, the throughput is restricted by the total
number of PEs (computation bounded). For example, late layers
in CONV5 of Resnet50 have more than 512 channels. Since
the evaluated edge accelerator has only 256 PEs, the maximum

throughput is bounded to 256 MACs per cycle, as shown in
the late layer column in Figure 3 and Figure 4.

NVDLA style dataflow provides the highest roofline through-
put in all the layer types other than early layers. This is
because the parallelization is over input and output channels,
but early layers have a small number of channels compared to
the activation size. However, ShiDiannao and row stationary
dataflow styles provide overall low throughput except early
layers because they parallelize computation over activations.

For fully connected layers, since the activation size is
analogous to the filter size, and the layer shape is extremely
narrow and deep, dataflow styles that parallelize over activation
can utilize limited number of PEs (e.g., only 1 PE is utilized
in row stationary style dataflow). That is, for such a dataflow,
the accelerator designer or a programmer needs to provide
alternative processing style for fully connected layers. Both
fully connected layers and residual links require larger amount
of bandwidth compared to other layer types because their
limited amount of data reuse implied by the operation.

Peak and Average Bandwidth Requirements. Most of
the accelerators adopt double buffering techniques to hide the
communication latency, which lowers the processing delay
of a computation tile from Delaycompute +Delaycommunication to
Max(Delaycompute,Delaycommunication). That is, data distribution
of the next computation tile is performed while a PE array
processes its previous tile. The average bandwidth requirements
we plot in Figure 3 and Figure 4 reflect such aspects.

Note that the communication delay is for the entire PE
array; if 32 data points need to be distributed for a new
computation tile while the NoC bandwidth is 12 bytes per cycle,
the communication delay is ceil(32/12) = 3 cycles. Therefore,
increased NoC bandwidth decreases communication delay in a
discrete manner. This leads to discrete increments of throughput
over bandwidth when the throughput is communication-bound
(or, when the NoC bandwidth is less than peak bandwidth).
We can observe such behaviors in the second row in Figure 3
and Figure 4.

The interval of discrete throughput increment implies the
performance sensitivity towards NoC bandwidth. We observe
that the sensitivity depends on both layer types and dataflow
styles. For example, NVDLA dataflow style has large NoC
banwidth intervals for throughput increases compared to other
dataflows in point-wise convolution operations, as shown in the
second column of Figure 3 and Figure 4. However, NVDLA
has relatively lower sensitivity in early layers.

The average bandwidth requirement line summarizes such
aspects and provides useful insights: (1) Depending on the
dataflow and layer type, providing more NoC bandwidth can
be futile (flat regions in average bandwidth lines) (2) For some
combinations of dataflow and layer type (e.g., NLR in FC layer
in Figure 3), NoC bandwidth is critical for performance.

V. DISCUSSION

While traditional NoCs have been introduced to easily
interconnect different cores inside a package, DNN accelerators
are starting to embody more and more number of processing



Accelerator Dataflow Strategy Temporal Reuse Spatial Reuse Loop Order Tile Size (K,C,Y,X,R,S)
Example for this work No Local Reuse (NLR) No data reuse No data reuse KYXRSC (1,1,|R|,|S|,|R|,|S|)
Example for this work Weight Stationary (WS) Weight Input (B) KCRSYX (1,1,|R|,|S|,|R|,|S|)
ShiDiannao [13] Output Stationary (OS) Output Input (M) and weight (B) KCRSYX/KCRSYX (1,1,|R|,7+|S|,|R|,|S|)
Eyeriss [6] Row-stationary (RS) Weight and output row Input (M) and weight (B) KCYXRS/KCYXRS (2,2,|R|,|S|,|R|,|S|)
NVDLA [12] Weight Stationary (WS) Weight Input (M) and weight (M) KCYXRS/CKYXRS (1,64,|R|,|S|,|R|,|S|)

TABLE I: Dataflow styles we charaterize and their characteristics. In spatial reuse column, ”M” and ”B” indicate multicast and broadcast,
respectively. In loop order column, red texts represent parallelized dimension, and ”/” indicates another PE hierarchy level. In tile size column,
absolute symbol on a dimension (e.g., |X |) represent the size of the corresponding dimension in a layer.
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Fig. 3: Resnet50 analysis. Dotted lines represent the peak bandwidth requirements for each dataflow style.
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Fig. 4: MobileNetV2 analysis. Dotted lines represent the peak bandwidth requirements for each dataflow style.

elements. This has led to a situation in which they face some
challenges such as scalability problems, lack of flexibility
for the mappings, lack of efficient broadcast support, limited
bandwidth and area and power over-consumption. As our
analysis shows, dataflow flexibility and bandwidth alone have a
huge impact in the throughput of an accelerator, and therefore
having an interconnect -such as WNoC- that provides solutions
for these challenges is a promising approach to boost the
performance of DNN accelerators.

WNoC allow to virtually map different topologies on-demand
at every cycle, allowing the required adaptability on the
dataflows and scaling the designs to thousands of PEs. Studies
in this topic [15], [16] have shown that WNoCs have great
potential and may fulfill these requirements.

VI. CONCLUSION

In this work, we characterized the impact of NoC band-
width on throughput and bandwidth requirement of DNN
dataflows over state-of-the-art DNN models with diverse layer
types and shapes. From the characterization results, we can
observe that both flexibility and sufficient bandwidth are
indispensable requirements for the NoC inside accelerators,
which is challenging for traditional NoCs to provide. However,
emerging interconnection technologies such as WNoC may be
able to deliver such desired features, therefore turning them
into promising candidates for the implementation of on-chip
networks within DNN accelerators.
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