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tances (nm-mm ranges), researchers are proposing to use molecular motors
and calcium signaling. For long distances (mm-m), pheromones are envi-
sioned to transport information. In this work we propose a new mechanism
for medium-range communications (nm-µm): flagellated bacteria. This tech-
nique is based on the transport of DNA-encoded information between emit-
ters and receivers by means of a bacterium. We present a physical channel
characterization and a simulator that, based on the previous characterization,
simulates the transmission of a DNA-packet between two nano-machines.
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1. Introduction

Nanotechnology is a multidisciplinary field based on knowledge of di-
verse scientific areas and with potential applications in several fields such as
biomedical, environmental or industrial (e.g., [1]). A nano-machine is the
most basic functional unit able to perform very simple tasks at the nano-
scale. These tasks include computing, data storage, sensing and actuation
among others [2].

Currently several approaches have been proposed to build nano-machines.
First, the top-down approach is based on downscaling current micro-electronic
and mechanical devices to the nano-scale [3, 4]. This promising approach is
still in an early stage. Second, in the bottom-up approach, nano-machines
are assembled based on individual building blocks [5]. Current synthetic
chemistry technology is able to prepare small molecules to almost any struc-
ture, and it is envisioned that in the future these techniques may be used to
develop nano-machines by arranging molecule by molecule [26]. This process
is called molecular manufacturing and may be developed from current tech-
nologies in a decade if adequate research efforts are devoted. And finally, in
the bio-inspired approach, nano-machines can be built by taking advantage
of existing biological nano-machines (e.g, cell receptors). This approach pro-
poses to use these biological nano-machines either as models to develop new
machines, or as building blocks. This technique offers promising solutions in
the short term.

In this scenario, nano-networks [2] are the inter-connection of nano-machines,
and as such expand the capabilities of a single nano-machine. Nano-networks
can provide means for cooperation and information sharing among nano-
machines, allowing them to fulfill more complex tasks.

Several techniques have been proposed to interconnect nano-machines [2].
Among the most promising ones is molecular communications, which is based
on the use of molecules to encode the desired information and transmit it by
mimicking biological systems found in nature. As a consequence, this com-
munication paradigm is particularly suited to bio-inspired nano-machines.

As it happens in nature, molecular communication should be tackled in
different ways depending on the distance between emitters and receivers.
Two different approaches have been already proposed for short and long-
range communications.

For short-range communications (nm-µm), researchers are proposing to
use either molecular signaling [27] or molecular motors [28]. The former
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method encodes information in variations of the concentration of the molecules
while the latter technique encodes the information into the molecules them-
selves. Concerning long-range communications (mm-m), pheromones [29]
have been proposed to carry information. As seen in nature, pheromones
emitted by a member of certain species can only be detected by other mem-
bers of the same species. Similarly, pheromones transmitted by a partic-
ular type of nano-machines may only be detected by other nano-machines
equipped with the corresponding decoder.

The existing short-range molecular communication methods do not seem
to be effective for distances longer than a few µm, but still, nano-machines
should be able to communicate with other nano-machines irrespectively of
their distances. For instance, molecular communication techniques based
on diffusion (such as calcium signaling or pheromones) show a very high
attenuation and delay for distances above a few tens of µm [22]. Further-
more, molecular motors are not appropriate for the medium range due to
their low propagation speed, in the order of 500 nm/s [32], among other
reasons. For this reason, in a previous work [6], we introduced two mecha-
nisms intended for medium-range communications (µm to mm) along with a
nano-network architecture. In particular we introduced flagellated bacteria
and catalytic nanomotors. Both methods are based on encoding informa-
tion in DNA sequences (a DNA packet) and carrying it to the receiver. Our
proposed network architecture assumes clusters of nano-machines that com-
municate among them using short-range mechanisms, and gateways that,
taking advantage of medium-range techniques, inter-connect clusters.

Following the nanonetwork architecture introduced in [6], the communi-
cation between two nanomachines is as follows (Fig. 1): first, the transmit-
ter nano-machine transmits the desired information to its gateway by using
short-range techniques, i.e. the information could be a DNA string and trans-
ported to the gateway by means of molecular motors. The gateway node,
which is envisioned as a DNA computer, multiplexes short-range packets of
different nano-machines that have the same destination gateway, hence, cre-
ating the medium-range packet (more details in the proposed multiplexing
scheme are presented in [6]). This packet is then encoded inside a flagellated
bacterium that transports the information to the receiver’s gateway. Then,
the receiver’s gateway demultiplexes the medium-range packet into different
short-range packets and relays these packets to the corresponding receiver
nano-machines by means of short-range techniques.

In this paper, we model the communication between gateway nodes by
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Figure 1: Communication process using flagellated bacteria

presenting a physical channel characterization for flagellated bacteria. A
scheme of the communication proccess is shown in figure 1. First, we de-
scribe the proposed mechanism to encode, transmit and decode information
using flagellated bacteria. Secondly, we characterize the random walk fol-
lowed by the bacterium in order to propagate the information. As we will
see, this random walk depends on the concentration of attractants. Finally
we have developed a simulator which allow us to quantify the propagation
delay and the packet loss probability. Researchers working in nano-network
architectures may consider these results when designing and/or evaluating
novel paradigms.

2. Background: Flagellated Bacteria

2.1. Overview

Bacteria have spent several billion years developing skills and efficient
machinery, as cilia and flagellum, that allow them to convert chemical en-
ergy into motion. For instance, Escherichia coli (E. coli), which is shown
in figure 2, has between 4 and 10 flagella moved by rotary motors located
at the cell membrane and fuelled by chemical compounds. E. coli also has
several pili distributed around its outer membrane that give the bacterium
the ability to cohere other cells in order to exchange genetic material, which
is carried out by a cellular process called bacterial conjugation.

Among all possible flagellated bacteria we focus on E. coli because it
is the most studied prokaryotic cell, and its complete genome sequence is
well-known [7]. E. coli is approximately 2 µm long and has a diameter of
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Figure 2: Flagellated Bacteria

1 µm, and it is usually an inoffensive bacterium that lives in the human
intestinal tract. Its nucleoid contains only one circular DNA molecule and
in its cytoplasm there are some smaller DNA sequences (called plasmids [8])
arranged in a circular way. Plasmids can give the bacteria resistance to some
antibiotics in the environment, but they are also used in genetic engineering
to conduct genetic manipulation experiments [9].

In this work, we propose to use flagellated bacteria to carry DNA mes-
sages to the appropiate receivers. In particular we propose to choose a specific
mutant of the bacteria that only responds to a subset of attractants [11]. The
proposed communication scheme is as follows: first, the DNA message is in-
troduced inside the bacterium cytoplasm. Then, the bacterium is released
into the environment that in turn will follow its natural instincts and will pro-
pel itself to a particular receiver, which is continuously releasing attractant
particles to the environment. Please note that this mechanism differs from
the traditional ones since since the receier has to actively release attractants
in order to receive information. Finally, in the last step, the reception and
decoding of the DNA message is done by exchanging the genetic material
between the bacterium and the final destination.

Flagellated bacteria requires that the receivers (gateways), mimicking
the design of certain natural cells, contain a reservoir of attractants and
mechanisms to release them. Clearly, there is an analogy between energy in
todays networks and the attractants in nano-networks, since both limit the
capabilities of these systems. In order to refill the gatewayss reservoir, that
is re-charge them (following the energy analogy), several mechanisms can be
used. For instance a micro-device could release large quantities of attractants
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in the environment that in turn could be captured by the gateways. This
should be done at a certain time frames in order to avoid disrupting the
existing communications.

In the following subsections we describe the communication process in
detail:

2.2. Encoding & Transmission

Instead of working with the common binary alphabet as today’s comput-
ers, some researchers argue that nano-machines will be able to work with a
quaternary alphabet composed by the DNA nucleotides: Adenine, Thymine,
Cytosine and Guanine (A, T, C and G) [12]. In this scenario, the information
that the emitter nano-machine transmits is expressed as a set of DNA base
pairs (i.e., the DNA packet).

Encoding is the process by which the DNA packet is inserted inside the
bacteria’s cytoplasm. This insertion can be done using a set of techniques:
plasmids, bacteriophages or Bacterial Artificial Chromosomes. All of them
are well-known and widely used in fields like biology or pharmacy.

Firstly, plasmids are circular sequences of DNA [13], with length be-
tween 5000 and 400000 base pairs (equivalent to 10 to 800 kbits), that can
be inserted inside bacterial cells by transformation or electroporation [8].
Secondly, bacteriophages are a type of viruses, smaller than bacteria, able to
infect bacteria with its genetic material. And third, Bacterial Artificial Chro-
mosomes (BAC) are artificial plasmids designed for cloning long segments,
up to 300000 base pairs of DNA (equivalent to 600 kbits). The procedure
used to encode the message inside the BAC is the same than the one used
for plasmids. It is worth to note that in this case the host bacteria must be
genetically modified in order to allow the entrance of the long BAC vector
through the membrane.

The maximum packet size depends on the method used for encoding the
information inside bacteria. It was reported in [8] that using plasmids it
is difficult to clone (in our case, encode) sequences longer than 15000 base
pairs, whereas the bacteriophages mechanism enables cloning of 23000 base
pairs. The most effective method is BAC, which enables to encode up to
300000 base pairs.

Unfortunately, all these methods have not yet been performed without
external intervention from the macro-scale. For this reason, we propose the
following approach. In early implementations, E. coli libraries could be cre-
ated, where each E. coli will have different pre-established encoded informa-
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tion, so different DNA packets. These bacteria could be stored in the gateway
node, in a kind of warehouse, and each bacterium will be resistant to a spe-
cific antibiotic which will allow the selection of the correct bacterium. By
applying the antibiotic to a small group of bacteria, the gateway can select
and release the desired bacterium, which contains the desired DNA informa-
tion, to the medium when it is necessary (the other bacteria will die by the
effect of the antibiotic). Since E. coli, as all bacteria, are able to reproduce,
so create a new bacteria with the same genome, new bacteria are constantly
created, this ensures that the warehouse will never be depleted. It is impor-
tant to remark that selecting the bacterium by using antibiotics and having
pre-established encoding information, will simplify the design of the gateway
node in early implementations, however, it will also limit the capacity of the
system. Hence, more research is required on how to implement the encoding
schemes inside the gateway node.

There are several issues that must be further studied:

� How the alien piece of DNA affects the bacterium, in other words, it
must be controlled that this piece of foreign DNA will not harm the
carrier bacterium nor create a strand of harmful bacteria. These could
be avoided by deleting the origin of replication of the plasmid. How-
ever, if the plasmid is not allowed to be cloned, the redundancy of the
message is lost, which is an important feature for obtaining robustness
of the message in a molecular communication network. Other alterna-
tives must also be studied, such as encoding the information as proteins
coated with vesicles.

� The encoding technique to be used must be determined by taking into
account both the integration feasibility in the micro-scale, i.e., in the
gateway node, and the requirements of the amount of information to
be transmitted. Indeed, nanotechnology offers new solutions which can
lead to rethinking of the current techniques. For instance, the plasmid
could be synthesized from scratch in the gateway node by using DNA
computing operations, and inserted inside the bacterium by using an
artificial bio-inspired pilus, hence mimicking the bacterial conjugation
process.

� The self-reproduction ability of bacteria carries several advantages, but
also a few drawbacks. The most obvious advantage is that bacteria
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self-reproduction naturally generates redundancy in the message. Re-
dundancy offers several benefits, such as a lower packet loss probability
and a lower mean propagation time. However, self-reproduction also
has some drawbacks, including the overpopulation of bacteria in the
environment and the introduction of errors in the message due to mu-
tations [33].

2.3. Propagation

Bacteria have a great number of chemical receptors surrounding its mem-
brane that allow them to sense the environment for the presence of attractant
particles and move towards them, this process is called chemotaxis. Bacterial
chemotaxis is a nature marvel example of signal transduction and it has been
widely studied in the literature [14, 15].

E. coli moves in series of “runs” and “tumbles” [16]. In each run, the
flagella motors spin counterclockwise, and the bacterium swims roughly in
straight line. A tumble is a small period of time during which the bacterium
moves erratically because several filaments are spinning clockwise. During a
running period, bacteria sense the amount of nutrients (sugars, amino acids
and dipeptides) in the environment several times by using its cell membrane’s
chemoreceptors [17]. By comparing the obtained results, the bacterium is
able to decide whether the nutrient concentration is increasing or decreasing.
If the concentration is increasing, the running time will be longer, so the
rotary motor spins counterclockwise during a longer period of time. This bias
in the running time enables cells to find the places where the environment is
better (in terms of nutrients).

In recent decades, an exhaustive research has been conducted in under-
standing how the flagellar motor of bacteria works. Its structure, parts, and
how these parts are assembled are well known [31]. Information regarding the
fuel that it uses, the torque that it can generate at different speeds and what
controls the likelihood of the direction changes are also well documented in
the literature. However, it is still unknown what makes the bacterium run or
tumble and what makes the motor change from one state to another. For this
reason, bacterial mobility still has a small random component that is being
widely studied [20, 15, 23]. This random component must be modeled in or-
der to find out the time required for the bacteria to move from the emitter to
the receiver. In sections 3 and 4, we elaborate on how the environment affects
the bacteria movement, and we model the bacterial movement, respectively.
In section 5, we describe a developed simulation tool which characterizes how
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bacteria move in a point to point communication and estimates the required
propagation time.

2.4. Reception & Decoding

The reception of a DNA packet can be done following a natural cellular
process called Bacterial Conjugation that is defined as the exchange of genetic
material among bacteria cells [13]. The exchange of these circular sequences
of genetic material (plasmids) is possible through direct contact between cells.
This contact is achieved by means of the bacterial appendage called pilus,
and the process is as follows. The donor bacterium localizes the receiver
cell, which in our case is the receiver’s node, and attaches to it using the
pilus. Then the bacterium retracts the pilus in order to have direct contact
with the receiver. This contact makes both membranes to fuse together, in
a kind of bridge by which the donor bacterium transfers a single strand of
the plasmid DNA. When both donor and recipient cells have a single strand
of the plasmid, DNA synthesis must be done (by both of them) in order to
recover the whole plasmid.

Once the plasmid is at the receiver, the DNA packet must be extracted
from the plasmid. This is done by restriction endonucleases enzymes that
cleave the plasmid in restriction sites. When the plasmid has been cleaved,
the receiver nano-machine is able to use and process the DNA packet.

3. Environment

In this section we describe the environment in which the bacterium lives
and transmits the information. This is required as a first step to characterize
the physical channel model. First, we describe the mechanism used to propel
the bacteria and the forces affecting it at the micro-scale. Secondly, we focus
on the diffusion of attractants, whose concentration is sensed by the bacteria.

3.1. Bacteria Propulsion in Low Reynolds Numbers

The Reynolds number [18] is a dimensionless number that expresses a
ratio between inertial and viscous forces of a given object:

R =
Initial forces

Viscous forces
(1)

Bacteria movement is governed by a set of forces completely different from
the forces that govern motion of objects at the macro scale. From the E. coli
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bacteria point of view, water is a granulated substance through which it has
to swim, and hence, bacterial movement is not constrained by inertial forces
but by viscous forces. For this reason it is considered that bacteria move in
low Reynolds numbers [19].

For a swimming organism, the Reynolds Number is given by:

R =
lvρ

η
(2)

where l is the size of the organism, v its velocity and, ρ and η are the
density and viscosity of the medium respectively [19].

For instance, an E. coli bacterium swimming fast in water has a Reynolds
coefficient of R = 10−5, whereas, a human paddling in a pool experiences a
Reynolds coefficient of R = 105. In order to understand the forces acting
upon a swimming bacterium, it was proposed in [19] to imagine yourself
trying to move in a swimming pool full of molasses, and that you are not
allowed to move the parts of your body faster than the hands of a clock.

Natural selection has driven microorganisms to develop efficient machin-
ery and tools that allow them to propel themselves in low Reynolds numbers
environments. E. coli bacteria have developed complex rotary motors that
are powered by protons or sodium ions (Na+) flux [20]. These motors are
able to produce a rotary movement of the flagellum either in a clockwise or
counterclockwise way.

When an E. coli is swimming at constant velocity, the rotary motors spin
counterclockwise and the cell body spins clockwise, as shown in figure 3.
Since the velocity is constant, the net force experienced by the bacterium
must be zero. Otherwise, it would either accelerate or decelerate. Taking
this into consideration, the torque generated by rotation of the filaments is
balanced by viscous drag due to counter-rotation of the body of the cell, and
thrust generated by rotation of the filaments is balanced by viscous drag due
to translation of the body of the cell.

Figure 3: Bacterium swimming at constant velocity v

10



3.2. Diffusion of Attractants

In the proposed model the receiver node is constantly releasing attractant
particles to the environment. These particles diffuse through the medium and
generate concentration gradients, which are sensed and followed by bacteria.
In order to quantify the time required for a bacterium to reach the receiver,
first we must model the diffusion of the attractants through the environment.

When in a certain environment there exists a non-uniform distribution of
particles, these tend to diffuse away in order to reach a uniform concentration
through all the space [21]. The flux of particles is obtained using Fick’s
first equation (eq. 3), which states that the net flux of particles in a certain
position and time is equal to the spatial gradient of the particle concentration
c(x̄, t) multiplied by the diffusion coefficient D.

J̄(x̄, t) = −D∇̄c(x̄, t) (3)

where ∇̄c(x̄, t) = ( δc(x̄,t)
δx1

δc(x̄,t)
δx2
· · · δc(x̄,t)

δxn
) is a vector that has the same

dimension than x̄ and J̄ .
The diffusion coefficient D for spherical particles moving in low Reynolds

number fluids is expressed as follows [19]:

D =
KbT

6πηr
(4)

where r is the radius of the particle, η and T are the viscosity and tem-
perature of the medium respectively and Kb is the Boltzmann constant.

The continuity equation (eq. 5) states that particles cannot be created
or destroyed; thus, the number of particles entering and leaving the system
must coincide. The principle states that the time derivative of the particle
concentration δc(x̄,t)

δt
at location x̄ and time t is equal to the opposite of the

particle concentration flux J̄(x̄, t) at location x̄ and time t.

δc(x̄, t)

δt
= −∇J̄(x̄, t) (5)

The second Fick’s law (eq. 6) is obtained by substituting the first Fick’s
law (eq. 3) into the continuity principle (eq. 5):

δc(x̄, t)

δt
= D∇2c(x̄, t) (6)
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where ∇2 is the Laplace operator which expresses the divergence of the

gradient, hence ∇2c(x̄, t) = δ2c(x̄,t)
δ2x1

+ δ2c(x̄,t)
δ2x2

+ · · ·+ δ2c(x̄,t)
δ2xn

As stated before, the receiver is constantly adding particles into the envi-
ronment and the concentration is constantly increasing, hence the continuity
principle is not satisfied. Under this constraint, we are not allowed to use
the second Fick’s equation (eq. 6).

In order to satisfy the continuity principle, we sample the concentration
in the environment in small periods of time, ∆t. If ∆t is small enough, we
can assume that, in this time interval, the number of particles in the system
is constant, and therefore the continuity principle is fulfilled.

Hence, we can express the second Fick’s Law using the finite differences
method in a discrete environment as:

c(x̄, t+ ∆t)− c(x̄, t)
∆t

= D
c(x̄−∆x̄, t)− 2c(x̄, t) + c(x̄+ ∆x̄, t)

(∆x̄)2
(7)

In order to use the finite differences scheme we must verify that the system
is stable. This is verified when time interval ∆t, is smaller than the length
interval, ∆x̄, divided by two times the diffusion coefficient, that is:

∆t ≤ (∆x̄)2

2D
(8)

4. Random Walk

Recently, exhaustive research has been conducted in order to understand
how the flagellar motor of bacteria works. Research on this topic is mostly
experimental, and although there is no closed expression for the runs and
tumbles of bacteria, empirical observations have shown that bacteria’s move-
ments have a random component. In this section we model the biased random
walk that describes the movements of the bacteria along with its response to
the concentration of attractants.

4.1. Overview

When an attractant particle binds to one of the chemoreceptors placed
at the cell membrane of the bacterium, it triggers a complex pathway of
chemical signals that regulates the motion of flagella’s rotaries motors. The
interested reader can find more information about this process in [20]. In
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this subsection we aim to model it. Our starting point is [15], where the
authors developed a microscope able to track and analyze the movement of
bacteria in a three dimensional environment. The researchers carried out two
experiments. In the first one, they introduced the bacteria in a homogenous
environment, where the concentration was uniform. In the second experiment
they introduced gradients of attractant particles using capillary tubes.

The first experiment revealed that the bacterium moves in a series of
running and tumbling periods. They observed that during a running period,
the cell swims at a constant velocity in an almost unidirectional direction.
However, the cell drifts due to the rotational diffusion which produces small
changes in its direction, as a result, the cell meanders during a run. In a
tumble period the bacterium slows down or stops and changes its direction
with an angle γ. Specifically they observed that the probability density func-
tion of γ was not uniform, but small changes on direction where more likely.
Moreover, they repeated the experiment several times and they discovered
that the run length and tumble length times are exponentially distributed.

In the second experiment they observed clouds of bacteria close to the
mouths of the capillaries sank. By tracking run and tumbling lengths the
authors were able to understand how bacteria move towards places with
higher concentrations. In this experiment they observed the same behavior
in terms of changes in direction and run and tumble length time distributions.
The main difference is that the mean run length increases when the bacterium
moves up the gradient, whereas when it is moving down gradients the mean
run length is similar than that observed in homogeneous solutions. This
increase in the mean run length results in a random walk model with a
preferred direction, that is, a biased random walk model.

In the following subsections we describe the model and the parameters
that govern the movement of bacteria, namely rotational diffusion, run and
tumbling lengths and changes in direction.

4.2. Changes in Direction due to Rotational Diffusion

As explained in the previous section, the forces required by bacteria to
move in water are governed by low Reynolds numbers. From the E. coli
perspective, water looks as a set of granulated particles that are continuously
moving. When the bacterium wants to swim, it has to drag these particles
causing the fluid to shear. Collisions with water molecules prevent the cell
from moving in a straight line; as a result, the bacterium drifts. This drift is
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commonly known as rotational diffusion and drives the cell to deviate more
than 60 degrees in 10 seconds [15].

In this section, we aim to characterize the rotational diffusion, which can
be analyzed as a rotational random walk [24] where every τ seconds the
bacterium rotates an angle of ±φ degrees. We define the random variable
θj(n) as the angle the bacterium j has rotated after a certain time t = nτ , and
we aim to characterize its mean and variance. With this purpose, we observe
that, for large values of t and assuming that each angular displacement is
independent from the previous ones, θj(n) follows a Brownian motion model.
Thus, the angular displacement can be modeled as a Gaussian process with
mean E[θ(t)] = 0 and variance given by [30]:

var[θ(t)] = 2Drt (9)

where Dr is the rotational diffusion coefficient [24] and t is the elapsed
time. We can express the rotational diffusion coefficient Dr as a func-
tion of the rotational frictional drag coefficient fr, given by the Einstein-
Smoluchowski relation:

Dr =
KbT

fr
(10)

where Kb is the Boltzmann constant and T is the temperature of the
environment. Assuming that the bacterium is modeled as a sphere of radius
a, and that it is placed in an environment with viscosity η, its rotational
frictional drag coefficient can be expressed as fr = 8πηa3. Then, we can
derive the rotational diffusion coefficient as:

Dr =
KbT

8πηa3
(11)

For example, if we assume that the bacterium radius is a = 1 µm, and
that the environment has a temperature T = 305 K and a viscosity η =
0.027 g/(cms), we obtain Dr = 0.062 rad2/s. Figure 4 shows the probability
density function of the angular deviation of the bacterium after 10 seconds
in a running period, which will be a normally distributed random variable
with mean E[θ(n)] = 0 and variance var[θ(t)] = 1.12 rad2 = 64.2 degrees2.

4.3. Changes in Direction in Tumbling Periods

Having characterized the drift of the movement of bacteria, in this sec-
tion we focus on their changes in direction. Between two consecutives runs
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Figure 4: Probability density function of the angular deviation

bacteria tumble, sense the environment for attractants and choose a new
direction. We define the random variables θn and θn+1 as the angles that
determine the bacterium direction in two consecutives runs. The angle θn+1

can be obtained as a function of the previous angle, θn and a random angle
γ:

θn+1 = θn + γ (12)

In order to characterize γ, we rely on the empirical measurements carried
out in [15]. In particular, the authors measured the probability distribution of
γ between two runs, shown in figure 5. Based on the authors’ measurements,
we approximate the probability density function f(γ) as:

f(γ) =

{
1
4
cos(γ/2) |γ| ≤ π

0 |γ| > π
(13)

Hence, in the simulation the angle of each running period, θn+1 is com-
puted as the angle of the previous run θn plus a random number γ generated
following the distribution given by eq. 13 and shown in figure 6.

4.4. Run and Tumble Lengths

In this section we focus on run and tumble lengths of bacteria. One may
wonder why E. coli tumbles; the main reason is that E. coli is aware of the
physics of the medium where it is living. The bacterium knows that after
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Figure 5: Distribution of changes in direction between runs (extracted from [15])

ten seconds swimming in straight line, the rotational diffusion will cause
a deviation on its initial course of more than 60 degrees on average. At
this point E. coli stops, senses the environment and takes another direction.
Therefore, the upper limit of the running time is set by the effect of the
rotational diffusion.

The lower limit is fixed by the time required by the bacterium to sense,
count and process the information regarding the concentration of attractants
and repellents in the environment. Since attractants move according to Brow-
nian motion, their expected displacement in a time t is equal to

√
2Dt, where

D is the medium diffusion coeficient. Thus, if the bacterium remains still in
one place for a period of time t, it will sense in average the attractant parti-
cles that are diffusing from a distance at most

√
2Dt. When the bacterium is

swimming with constant velocity v, if it wants to verify whether the attrac-
tants concentration is increasing or decreasing, it must outrun the diffusion of
particles. This implies that vt >

√
2Dt. As a result, a rough approximation

of the minimum time required for the bacteria to sense the concentration is:

tmin =
2D

v2
(14)

The diffusion coefficient D depends on the specific attractants sensed by
bacteria. Bacteria have a large set of chemoreceptors in its membrane. Each
kind of chemoreceptor reacts with a different attractant and presents different
efficiencies and sensibility [17]. Aspartate and Serine attractants present the
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Figure 6: Probability density function of γ

best response and precision; for this reason, we assume these attractants
in our model (D = 10−9m2/s) [20]. Other attractants could be chosen as
well, provided that they are chemically compatible and thus their interaction
does not trigger a chemical reaction. Hence, given D, if we assume that the
bacterium is moving with a velocity of v = 30 µm/s, the minimum run time
is tmin ≈ 1 s.

Run Length: We consider an event as a change in the bacterium state
from run to tumble. Since it has been empirically observed that both the run-
ning and tumbling lengths are exponentially distributed [15], we can model
the event “the bacterium state changes from run to tumble” as an exponen-
tial random variable. Then, we can obtain the probability that this event
occurs in a certain instant tn as:

P (tn;λ) = λe−λtn (15)

where λ is the mean run length of the bacterium.
Tumbling Length: Similarly, the probability of the event “the bac-

terium state changes from tumble to run” occuring in a given time tn is:

P (tn;µ) = µe−µtn (16)

where µ is the mean tumble length of the bacterium. In this case, µ = 0.1
seconds [20].
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Tumbling Rate: The tumbling rate α(t) is the inverse of the mean run
length λ(t), so it can be expressed as:

α(t) =
1

λ(t)
(17)

We represent here λ as a function of time, since it has been found that the
mean run length depends on whether the bacterium is going in the right or
wrong direction, that is, ascending or descending the gradient of attractant
particles. If the bacterium is going down the gradient, the mean run length is
constant and we can approximate it as λ = 1 second; whereas if it is going up
the gradient, the mean run length is longer and we can obtain it as a function
of the sensed concentration c(t) [20]. The process by which the bacterium
obtains this function is explained in section 4.5.

4.5. Impulse Responses in Bacterial Chemotaxis

The behavior of the bacteria when exposed to brief impulses of attractants
has been previously measured in [25]. In order to obtain the bacterium’s
response to an attractant impulse, a flagellum of the cell is tethered to a
glass surface and the response of the rotary motor is monitored, measuring
the probability that the motor spins counterclockwise, hence, the probability
that the cell is running.

The top plot in figure 7 shows the probability that the bacteria starts
running when a stimulus of an attractant is applied, whereas the bottom
plot corresponds to the case when a repellent stimulus is applied to the cell.
Both stimuli are applied at the time instant t = 5 s. When the bacterium
senses an attractant stimulus, its response appears after 0.2 seconds and it
has a peak 0.4 seconds after applying the stimulus. Then, the probability
drops again, crossing the baseline at the time instant t = 6 s. The response
reaches a minimum at t = 6.5 s, and finally it goes back to its initial value
about 4 seconds after the application of the stimulus.

In light of these empirical results, we assume that the run probability
in front of the attractant concentration satisfies the properties of linearity
and time-invariance. Then, we can model the run probability of bacteria
as a system characterized by an impulse-response h(t) and whose input is
the concentration sensed by the bacterium c(t). Note that the whole com-
munication system may not be linear and/or time-invariant, only the run
probability is modeled as a linear invariant system. Based on the empirical
observations from [25], we model the impulse response of the run probability
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Figure 7: Temporal evolution of the run probability of E. coli bacteria when exposed to
attractants (above) and repellents (below) (extracted from [25])

of the bacterium using spline interpolation; we obtain the function shown in
figure 8.

The Fourier transform of the impulse response is represented in figure 9,
which shows that bacteria behave as a low pass filter of the concentration in
the environment with a cut-off frequency of fc = 0.64 Hz.
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Figure 8: Normalized impulse response of the run probability of flagellated bacteria

The output of this system is the convolution of the sensed concentration
and the impulse response. This output y(t) is used by the bacterium to
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determine the mean run length λ(t), or its inverse, the tumbling rate α(t).
The tumbling rate can be obtained as follows:

α(t) =
1

λ(t)
=

{
1− ky(t) y(t) > 0

1 y(t) ≤ 0
(18)

where y(t) =
∫∞

0
h(t)c(t − τ)dτ and k is a constant that normalizes its

energy.

5. Simulation Tool

In this section we describe the simulation tool that we have developed to
evaluate a point-to-point link using a flagellated bacterium as information
carrier. First we describe the model used to simulate the diffusion of particle
attractants and then the simulation model for the bacterium itself.

5.1. Simulation of Attractant Particle Diffusion

Recalling section 3, using eq. 7 and choosing the parameter correctly to
satisfy eq. 8, we can simulate how the attractant particles that the receiver
is releasing diffuse through the environment. That is, the concentration that
a bacterium senses when moving towards the receiver. The parameters used
in our simulation are the following:
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Diffusion Coefficient: As stated before, we assume that the specific
attractants used by the receiver are Aspartate and Serine. Their diffusion
coefficient in water is D = 10−9m2/s [20].

Time and Length Intervals: The time interval, ∆t, and the length
interval, ∆x̄, have been chosen in order to satisfy the stability eq. 8. We have
also taken into account that ∆t must be small enough to let the bacteria have
enough resolution of attractant concentration. Hence, the values used in our
simulation are ∆t = 10−2 s and ∆x̄ = 10−5 m.

The receiver nano-machine, which is constantly releasing attractant par-
ticles, is placed in the middle of the simulated space. We assume that the
concentration gradient becomes stable after a certain time. The results pre-
sented in figure 10 have been taken after 10 minutes of simulation and it is
easy to observe that the diffusion is an isotropic process. Moreover, the con-
centration gradient increases when approaching to the source of attractants,
the receiver nano-machine. This increase in the concentration gradient is
sensed by bacterium’s chemoreceptors, which leads the organism to regions
with high concentration of attractants.

Figure 10: Diffusion of attractant particles
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5.2. Simulation of the Movement of Flagellated Bacteria

In this subsection we describe the simulation tool described to simulate
the bacterium. This simulation tool takes into account all the parameters
that define bacteria behavior, which have been introduced in the previous
sections. With this model, we are not only able to obtain the path that a
certain bacterium follows, but also the required time to reach the receiver,
i.e., the propagation time. In case that the bacterium does not reach the
receiver after a certain time tmax, we assume that the bacterium is lost, and
hence, that the transmitted packet is lost.

The movements carried by the simulated bacterium depend on the present
state. After reading the concentration on the environment, the bacterium
computes the probability to change the state and decides either to change or
remain in the same state. These probabilities are computed by taking into
account the mean run and tumbling lengths of the bacterium (see section 4.4).
When the bacterium is running, it moves 0.2 µm in the direction given by
θ, otherwise it remains in the same position. The rotational diffusion, see
section 4.2, is simulated by generating a random number with the variance
given by eq. 9. The changes in direction between runs have been obtained
by generating a random number distributed following the probability density
function shown in figure 6 (see section 4.3).

The details about the parameters used in the simulators along with its
pseudo-code can be found in the appendix.

6. Simulation Results

This section presents the simulation results. We focus first on figure 11,
which shows the trace of a single bacterium from the transmitter (square)
to the receiver (circle). We observe that the bacterium moves by following
a biased random walk model, as discussed in section 4. We can observe
that, when the bacterium is going towards the receiver, the runs are longer
than when it is heading in the opposite direction. Moreover, the plot shows
that, when the bacterium is running, its direction is slightly affected by
the rotational diffusion; whereas its changes of direction are larger when it
tumbles.

The results in terms of the propagation time of the bacteria from the
transmitter to the receiver are shown in figure 12. We carried out 1000
simulations using different distances, ranging from 50 µm to 1 mm, in steps
of 50 µm. We define tprop(d) as a random variable that accounts for the
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Figure 11: Trace of the bacterium from the transmitter (square) to the receiver (circle)

propagation time of the bacteria for a given distance between transmitter
and receiver d. By averaging the results, we obtain the mean propagation
time E[tprop(d)] in minutes as a function of the distance, shown in figure 12.
The squares correspond to the times obtained through simulation, and the
solid line is the approximation of the propagation time t̄prop(d) by a second
order polynomial, obtained by polynomial fitting:

t̄prop(d) = 1.82d2 + 4.49d+ 0.17 (19)

This second order polynomial t̄prop effectively approximates the mean
propagation time tprop in minutes as a function of the distance d in mm.

Moreover, for a given distance it is possible to analyze how the arrivals are
distributed as a function of time. In figures 13(a) and 13(b), the dots repre-
sent a histogram of the number of bacteria arrivals as a function of time, for
distances of 150µm and 1000µm, respectively. The probability distribution
of the propagation time can be approximated with a gamma distribution,
which represents the sum of k independent exponentially distributed ran-
dom variables, each of which has a mean of θ. The gamma distribution has
the following probability density function:

f(x, k, θ) = xk−1 e
−x/θ

θkΓ(k)
for x, k, θ > 0 (20)

where Γ represents the gamma function. The choice of this model is
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Figure 12: Mean Propagation Time of flagellated bacteria

motivated by the actual movement of bacteria: since the run lengths are
exponentially distributed and approximately independent, the gamma dis-
tribution is expected to be a good fit for the propagation time. The mean
propagation time of bacteria for a given distance can then be expressed as
E[tprop(d)] = kθ, where k is the average number of runs and θ the mean run
length.

This approximation is obtained by curve fitting and shown as a continuous
line in figures 13(a) and 13(b). The adjusted R-square values are 0.96 and
0.89, respectively, confirming the goodness of the fits.

It is worth to note that bacteria contain a large number of chemicals
receptors surrounding its membrance used to sense the attractants. These
sensors have a natural limit on its sensitivity and cannot sense the attrac-
tants at certain low concentrations. Thus, the maximum distance that a
bacterium can travel depends on the concentration of attractants released by
the receptor, and the minimum concentration that the chemoreceptors are
able to sense. We refer the reader to [14] for more details about this.

Concerning packet losses, in our simulations all the bacteria reached their
destination. However, in a real scenario, bacteria may become lost or die
during the transmission. In order to account for these effects, we assume that,
if the bacterium does not reach the receiver after a certain time tmax, it is lost.
Then, taking into account that the propagation time can be approximated
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Figure 13: Distribution of arrivals per time for two distances (150 µm and 1000 µm)

by a gamma distribution, the packet loss probability can be approximated
as:

Ploss(d) = P [(tprop(d) > tmax] = 1− F (tmax, k, θ) =
k−1∑
i=0

(tmax/θ)
i

i!
e−tmax/θ

(21)
where F is the cumulative distribution function of the gamma distribu-

tion. Taking this into consideration, the amount of losses increases as the
distance increases.

7. Conclusions

In this paper we have proposed a new mechanism for medium-range com-
munications in nano-networks: flagellated bacteria. This method is based on
encoding the information in DNA sequences (a DNA packet) and transmit-
ting it using a flagellated bacterium as a carrier. In the proposed technique
the receiver is constantly releasing attractants to the environment that are
sensed by the bacteria that in turn, propel themselves towards the receiver.

We have presented a physical channel characterization for flagellated bac-
teria in nano-networks. To this aim, we have modeled the diffusion of at-
tractants, the biased random-walk of bacterium and its impulse-response to
the attractants. Finally we have developed a simulator that allows us to
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characterize both the propagation delay and the packet loss probability. Re-
searchers working in novel nano-network architectures may consider these
results when designing new protocols or architectures for nano-networks.
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8. Appendix

This appendix details all the parameters used in the simulations and the
pseudo-code of the simulator:
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� The simulation space is assumed to be a 2D squared space with a length
side of 2 mm. This allows us to simulate a range of up to 1mm.

� The transmitter is located in the middle of the space, hence, in the
position x = y = 1mm.

� The receiver is located in a distance d from the transmitter. Hence, in
the position x = d+ 1mm and y = 1mm.

� The bacterium is moving at a constant velocity v = 20µ/s (see [20]).

� Initially the bacterium is in the running state and it is released in the
correct direction, that is in the positive direction of the x axis.

� The bacterium reaches the receiver if the distance that separates them
is less than 15 µm.

� The time-step of the simulation is 0.01 s.
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Figure 14: Pseudo-code of the simulator
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