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AbstractThe scattering of terahertz radiation on a graphene-based nano-patch antenna is numerically analyzed. Theextinction cross section of the nano-antenna supported by silicon and silicon dioxide substrates of di�erentthickness are calculated. Scattering resonances in the terahertz band are identi�ed as Fabry-Perot resonancesof surface plasmon polaritons supported by the graphene �lm. A strong tunability of the antenna resonancesvia electrostatic bias is numerically demonstrated, opening perspectives to design tunable graphene-basednano-antennas. These antennas are envisaged to enable wireless communications at the nanoscale.1. IntroductionGraphene has recently attracted intense atten-tion of the research community due to its extraor-dinary mechanical, electronic and optical proper-ties [1]. Being a �at monolayer of carbon atomstightly packed in a two-dimensional honeycomb lat-tice, graphene allows to utilize novel physics ina plethora of potential applications, ranging from

ultra-high-speed transistors [2] to transparent solarcells [3], meta-materials [4] and graphene plasmon-ics (author?) [5, 6, 7, 8, 9].One particularly promising research �eld isthat of graphene-enabled wireless communications.Wireless communications among nanosystems, i.e.,integrated systems with a size of a few microme-ters, cannot be achieved by simply reducing thePreprint submitted to Elsevier June 4, 2012



Figure 1: Sketch of the graphene-based nano-antenna underconsideration.size of classical metallic antennas down to a fewmicrometers. This approach presents several draw-backs, such as the low mobility of electrons in nano-scale metallic structures and especially the use ofvery high resonant frequencies (up to infrared andoptical range), which result in a huge channel at-tenuation and the di�culty of implementing nano-transceivers operating at such a high frequency. Forthese reasons, using micrometer-size metallic anten-nas to implement wireless communications amongnanosystems becomes unfeasible. However, owingto its ability to support surface-plasmon polaritons(SPP) (author?) [10, 11], graphene is seen as theenabling technology for this emerging �eld. In-deed, a graphene-based nano-patch antenna withlateral dimensions of just a few micrometers is pre-dicted to resonate in the terahertz band (author?)[12, 13], at a dramatically lower frequency and witha higher radiation e�ciency with respect to theirmetallic counterparts. In consequence, graphene-based nano-antennas are envisaged to enable wire-less communications among nanosystems [14].In this work, we present a systematic numeri-cal analysis of the terahertz radiation scatteringon a graphene-based nano-patch antenna (Figure1). A graphene rectangular patch with length Land width W supported by a dielectric substrate ofthickness D is illuminated by a plane wave linearlypolarized along the patch length. The associatedscattering problem is then solved numerically, andthe extinction, absorption and scattering cross sec-tions are analysed.The remainder of this paper is organized as fol-lows. In Section 2, the expression used to modelthe electric conductivity of graphene is presented.In Section 3, two di�erent approaches to model agraphene patch are described and compared. Sec-

Figure 2: Real and imaginary part of the total conductivity(solid lines) and the intraband conductivity (dashed lines)at room temperature (T = 300K) and zero electrostatic bias(µc = 0 eV)tion 4 explores the dependence of the graphene-based nano-antenna cross sections as a function ofseveral pameters, such as the antenna dimensions orthe chemical potential. Finally, Section 5 concludesthe paper.2. Graphene conductivityGraphene-based nano-patch antennas are envis-aged to have a length and width in the order ofa few micrometers [12, 13]. Since it has been ex-perimentally demonstrated that edge e�ects on thegraphene conductivity only appear in structureswith lateral dimensions considerably smaller than100 nm (author?) [15], in this analysis we will dis-regard the edge e�ects and will use the electricalconductivity model developed for in�nite graphenesheets [10, 11].The surface conductivity of an in�nite graphene�lm can be calculated by means of the Kubo for-malism [10, 11]. Within the random-phase approxi-mation, the surface conductivity can be representedin a local form with the Drude-like intraband con-tribution
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is de�ned as
H(ε) =

sinh (~ε/kBT )

cosh (µc/kBT ) + cosh (~ε/kBT )
.In the frequency region of interest (below 5 THz),the intraband contribution (1) dominates (au-thor?) [16]. This can be seen in �gure 2, wherethe frequency dependence of the real and imagi-nary part of the intraband conductivity σ and thetotal conductivity σtotal = σ + σi are compared atroom temperature (T = 300K) and zero electro-static bias (µc = 0 eV). In the following, we ne-glect the interband conductivity contribution andassume the conductivity of the graphene patch tobe purely intraband one.3. Numerical methodsIn order to �nd the electromagnetic �eld scat-tered by a graphene structure, it is necessary to cou-ple the phenomenological model of graphene con-ductivity with Maxwell's equations. The majorchallenge here is to model an in�nitesimally thingraphene layer using a �nite-size discretization ofspace typical for numerical calculations.There are two main methods that can be used tomodel a graphene sheet. The �rst technique con-sists in approximating a graphene layer by an equiv-alent thin slab with a small, but �nite, width. Thepropagation of the electromagnetic �elds within theslab is modeled by assigning to it a normalized ef-fective conductivity [4, 7]
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 (2)where ∆ is the thickness of the equivalent slab andthe graphene sheet is located in the x-y plane. Themain drawback of this method is that a realisticmodel of graphene will have a length L much largerthan its thickness ∆, resulting in a very high aspectratio (L/∆ ∼ 1000). The numerical computation ofthe electromagnetic �elds in such a structure willtherefore require a very high mesh density, leadingto a high computational cost.As an alternative to treat this problem with lowercomputational costs, the graphene sheet can bemodeled as an equivalent impedance surface (au-thor?) [13, 17]. The surface impedance Zs con-nects the tangential component of the electric �eldon the surface with the electric surface current,

Figure 3: Extinction cross section per unit width of a 10 µmwide graphene patch with length L = 5 µm. Results of thesurface impedance model (dashed black line) and the equiva-lent slab model (solid lines ) are shown at room temperature(T = 300K) and zero electrostatic bias (µc = 0 eV). Thethicknesses of the equivalent graphene slab ∆ are 500 nm,200 nm and 5 nm, from left to right.
Eτ |z=0

= ZsJsurf . Taking into account that thecurrent induced in the graphene layer is purely su-per�cial and it is related to the tangential compo-nent of the electric �eld via the surface conductivity
σ as Jsurf = σ Eτ |z=0

, one can de�ne the boundaryconditions at the graphene interface
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,(3)where Zs = 1/σ is the equivalent surface impedanceof the graphene. The boundary conditions (3) fullydetermine the electromagnetic problem and can besolved numerically using a computational scheme ofchoice.Figure 3 contains a comparison between theequivalent slab model and the surface impedancemodel. In all numerical calculations the methodof moments with surface equivalence principle [18]has been employed. The solid lines show the ex-tinction cross section of the antenna as a functionof frequency when the antenna is modeled as a thinslab, with an e�ective conductivity as de�ned in (2),for di�erent antenna thicknesses: 500 nm, 200 nmand 5 nm, from left to right. The dashed line cor-responds to the surface impedance model. Onecan see that the equivalent slab model convergesto the surface impedance model as the equivalentslab thickness is reduced, while simultaneously re-quiring denser mesh (higher computational costs)for smaller equivalent thickness. In what followsthe surface impedance model is used to numerically3



Figure 4: The absorption (black line) and scattering (dashedred line) cross sections of a graphene antenna on an in�nitesilicon substrate, obtained using numerical simulations, ascompared with the absorption (blue line with dots) and scat-tering (dashed green line with dots) cross sections obtainedusing the Fabry-Perot model.characterize the graphene patch due to its accuracyand e�ciency.4. Scattering propertiesIn order to study the performance of a graphene-based nano-patch antenna, it is interesting to in-vestigate the scattering, absorption and extinctioncross sections of a graphene patch. The scatter-ing and absorption cross sections are de�ned as...[TODO]. The extinction cross section correspondsto the sum of the scattering cross section and theabsorption cross section.The calculated scattering and absorption crosssections of a graphene patch with length L = 1µmand width W = 100µm normalized to the patch ge-ometrical area are shown in �gure 4. The antennais supported by an in�nite silicon substrate withdielectric constant ε = 11.9. Room temperature(T = 300K) and zero electrostatic bias (µc = 0 eV)are assumed. The interaction of the terahertz ra-diation with the antenna is dominated by the ab-sorption, with the scattering being three orders ofmagnitude weaker due to the large wavelength mis-match between the electromagnetic excitation inthe graphene layer and in the far-�eld. The to-tal extinction cross section is equal to a few per-cents of the graphene area and demonstrates a clearresonant character. The obtained absorption crosssections are consistent with experimental results re-ported for graphene micro-ribbon arrays [19].In order to understand the resonant behavior, weconsider a simple Fabry-Perot (FP) model for thegraphene patch. An in�nite graphene layer placed

on the air-dielectric interface supports transverse-magnetic (TM) SPP waves with a dispersion rela-tion given by [5]
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. (5)Here λ is the SPP wavelength, m is an integer, Leffis the e�ective resonator length and δL is a mea-sure of the �eld penetration outside the graphenepatch. Solving the dispersion relation (4) with theFP condition (5) for a given e�ective resonatorlength Leff results in a set of m complex frequen-cies ωm (resonator modes). The coupling of theincident radiation with those modes leads to reso-nances in the extinction spectra. Taking into ac-count that the modes of the resonator are orthog-onal, one can model them as a set of independentdriven harmonic oscillators with angular frequen-cies ω0m =

√

(Reωm)2 + (Imωm)2 and dampingrates γm = −2Imωm. Then, the scattering and ab-sorption cross sections of the graphene antenna canbe calculated as a sum of the normalized scatteredand dissipated power of individual oscillators [20],respectively.Fig. 5 shows the SPP wavelength and the ratio ofthe propagation length to the plasmon wavelengthin a free-standing graphene layer as a function ofthe frequency. We observe that the SPP has a wave-length in the order of a few micrometers in the ter-ahertz frequency range, matching the expected sizeof envisaged graphene-based nano-antennas. Onthe other hand, consistently with the behavior ob-served in infrared frequencies [21], graphene showslow propagation lengths of less than one SPP wave-length. However, since a resonant graphene patchantenna will have dimensions of approximately halfthe plasmon wavelength, the sub-wavelength prop-agation length, caused by high ohmic losses in thegraphene sheet, is not expected to hamper the per-formance of graphene antennas.4



Figure 5: Plasmon wavelength (black line, left verticalaxis) and ratio of the propagation length to the plasmonwavelength (red line, right vertical axis) in a free-standinggraphene layer as a function of frequency. The frequencyranges from 0.1 to 5 THz.In �gure 4, the absorption and scattering crosssections obtained with the FP model are comparedwith the results of a direct numerical simulation.In the simulation, a plane wave is incident to agraphene patch and the absorption and scatteringcross sections are obtained by measuring the powerabsorbed and radiated by the graphene patch, re-spectively, normalized to its size. The e�ectivelength of the FP resonator is set to Leff = 1.36µm,where the penetration length δL = 0.18µm hasbeen estimated based on the numerical simulations.With the oscillator strength fm used as a �t pa-rameter, a reasonable agreement with numerical re-sults can be achieved even if only the �rst FP mode(f1 = 0.073) is taken into account.The spectral position of the SPP resonance canbe adjusted by an appropriate choice of the res-onator length and width. The dependence of theresonant frequency on the resonator length, calcu-lated using equivalent surface impedance method,is shown in �gure 6 for di�erent resonator widths.The results correspond to a graphene patch on in�-nite silicon substrate at room temperature and zeroelectrostatic bias. A wide frequency range in theterahertz band can be covered by choosing antennadimensions. For a given length, antennas withsmaller width possess resonance at lower frequen-cies. This e�ect might be due to the higher con-�nement of surface plasmons in a narrow graphenepatch, which would cause an increase of the e�ectivepermittivity and a reduction of the wave propaga-tion speed in the graphene patch. The resonanceshifts towards higher frequencies for shorter anten-nas, in full agreement with the resonance condi-

Figure 6: Dependence of the �rst resonant frequency of thegraphene antenna on its length, L, for di�erent widths, W =

100 µm, W = 5µm, W = 0.5µm and W = 0.2µm.tion (5).The dielectric constant and thickness of the sub-strate in�uence both the spectral position and mag-nitude of the resonance. In �gure 7 (top), theextinction cross section of the graphene antennawith length L = 1µm and width W = 0.5µmsupported by di�erent in�nite substrates is shown.As expected from the SPP dispersion relation (4),an increase of the dielectric constant of the sub-strate shifts the resonance towards lower frequen-cies, while simultaneously reducing the extinctione�ciency. For a silicon substrate, a fourfold reduc-tion of the total extinction cross section can be ob-served in comparison to the antenna suspended inair. One can partially compensate this reduction byadjusting the substrate thickness. In �gure 7 (bot-tom), the extinction cross section is shown for theantenna on silicon substrate with di�erent thick-nesses. Due to constructive interference in the sub-strate, the extinction cross section can restore itsvalue corresponding to the antenna in air. In par-ticular, if the FP resonance of the substrate coin-cides with the one of the antenna (D = 37.5µm), a�vefold enhancement of the extinction cross sectioncan be achieved.The strong dependence of the graphene conduc-tivity on the chemical potential µc opens the pos-sibility to tune the antenna resonant frequency. In�gure 8, the extinction cross section of the grapheneantenna for di�erent values of µc is shown. A chem-ical potential of 0.2 eV results in the resonant fre-quency shift of 1.4 THz, while corresponding to abias �eld below 1V/nmwhich is experimentally fea-sible and can be achieved with a bias voltage wellbelow 100 volts [11]. This could enable a highly5



Figure 7: Top: Normalized extinction cross section of thegraphene antenna placed on di�erent substrates, silicon(ε=11.9), silica (ε=4.0) and vacuum (left to right). Bottom:Normalized extinction cross section for di�erent thickness ofsilicon substrates, D = ∞ (solid), D = 37.5 µm (dashed)and D = 5µm (dashed-dotted).tunable antenna in the terahertz band. At the sametime, such an antenna would also possess high tem-perature stability. For the considered structure, a100 K temperature variation results in a resonantfrequency shift of only 0.15 THz (Figure 8).5. ConclusionsTo conclude, we have analyzed the radiationscattering on a rectangular graphene-based nano-patch antenna. Due to the propagation of surface-plasmon polariton waves in graphene, the antennashows a resonant behavior in the terahertz fre-quency band. Moreover, the simulation resultsdemonstrate that such a structured graphene �lmhas the potential to be used as a tunable terahertzantenna. Indeed, we have observed that the an-tenna resonant frequency can be tuned by chang-ing the substrate material or size, or by applyingan external electrostatic bias.AcknowledgementsThis work has been partially supported by theFPU grant of the Spanish Ministry of Education.

Figure 8: Dependence of the antenna resonant frequencyon the electrostatic bias at T = 300K (top) and on thetemperature at µc = 0 eV (bottom). L = 1µm, W = 0.5µm,
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