
A General, Fault tolerant, Adaptive, Deadlock-free
Routing Protocol for Network-on-chip
Pieter Stroobant

IDLab
Ghent University - imec

Ghent, Belgium
pieter.stroobant@ugent.be

Sergi Abadal
N3Cat

Universitat Politècnica de Catalunya
Barcelona, Spain

abadal@ac.upc.edu

Wouter Tavernier
IDLab

Ghent University - imec
Ghent, Belgium

wouter.tavernier@ugent.be

Eduard Alarcón
N3Cat

Universitat Politècnica de Catalunya
Barcelona, Spain

eduard.alarcon@upc.edu

Didier Colle
IDLab

Ghent University - imec
Ghent, Belgium

didier.colle@ugent.be

Mario Pickavet
IDLab

Ghent University - imec
Ghent, Belgium

mario.pickavet@ugent.be

Abstract—The paper presents a topology-agnostic greedy pro-
tocol for network-on-chip routing. The proposed routing algo-
rithm can tolerate any number of permanent faults, and is proven
to be deadlock-free. We introduce a specialized variant of the
algorithm, which is optimized for 2D mesh networks, both flat
and wireless. The adaptiveness and minimality of several variants
this algorithm are analyzed through graph-based simulations.

Index Terms—Network-on-Chip, fault tolerant routing,
deadlock-free routing, adaptive routing

I. INTRODUCTION

The ongoing downscaling of transitor technology has al-
lowed to integrate increasingly large numbers of electronic
systems in a single chip (i.e. system-on-chip). Network-on-
chip (NoC) provides a communication system between the
components of such a system-on-chip and has been shown to
be a more scalable means of communication than traditional
bus-based connections [1].

However, these small-scale technologies are expected to be
increasingly prone to hardware defects [2]. Also, the use of
network-on-chip technology has been proposed for challenging
applications such as software-defined metamaterials, which
are deployed in extreme environments in which component
failures are more likely to occur [3]. This creates a need for
network-on-chip routing algorithms which are able to deal
with such defects.

Additionally, a variety of NoC architectures have been
proposed [4]. The heterogenity in network topology is in-
creased even further by power-gating techniques [5] and the
introduction of wireless, reconfigurable links [6]. Routing
algorithms should be able to handle a variety of network
topologies.

P. Stroobant is funded by a Ph.D. grant of Ghent University, Special
Research Fund (BOF). S. Abadal and E. Alarcón gratefully acknowledge
support by the European Commision under grant H2020-FETOPEN-736876
(VISORSURF).

The contribution of our paper is to propose and evaluate a
routing protocol with the following properties:

• Our algorithm achieves full fault coverage: whenever a
path between a transmitting node and the destination
exist, a route will be found. This is in contrast to some
methods (see Section II), which require to deactivate
healthy nodes that are part of a ‘fault region’.

• The presented routing scheme is topology-agnostic, i.e. it
works (in principle) on any topology. However, increas-
ingly complex topologies require longer address sizes.
Network layouts with a high regularity allow for a more
efficient address representation (see Section IV-C).

• No routing table is required by the algorithm. Thus, no
hardware for such tables must be provided, which limits
the area overhead of an implementation.

• The algorithm is fully distributed: there is no single point
of failure in the network

• The proposed method is deadlock free, and no virtual
channels are required

• When several paths between the source and destination
nodes are possible, the routing method typically allows
forwarding nodes some choice in the selection of the
next hop. Combining this freedom with local congestion
information may allow routers to adapt the route in order
to aim at a lower congestion rate. This adaptiveness
is analysed in Section V. However, in use cases which
require that all packets arrive in order, the algorithm can
be made deterministic as well.

• Whilst in operation, some newly occurring component
(node or link) failures do not require to reconfigure
the routing algorithm. This property can be leveraged
to achieve no reconfiguration overhead when turning
off parts of the chip to save power using power-gating
techniques [5].



• There is no guaranteed minimal path length, that is, the
length of some of the paths generated by the algorithm
may suboptimal. Longer paths result in an increased
latency, and thus should be avoided. Section V evaluates
the performance of the algorithm in terms of path length.

To the best of our knowledge, our work is the first topology-
agnostic routing algorithm which provides full fault coverage
without requiring the area overhead that comes with routing
tables. This comes from the fact that we are the first ones
to propose the use of spanning trees for greedy routing in
network-on-chip.

Our work is structured as follows: an overview of related
work on fault tolerant routing techniques for networks-on-chip
is given in Section II. Subsequently, Section III explains the
routing technique in its most general formulation, and provides
proofs and insights in the properties of the routing method.
Next, Section IV argues how to optimize this algorithm for
(hierarchical) grids. After this, Section V presents some key
metrics for the proposed algorithm in a 2D mesh network
setting. Finally, Section VI summarizes our work.

II. RELATED WORK

An overview of fault tolerant routing techniques in the
context of network-on-chip is provided by [7]. In the context of
our work, we provide a short overview of the main techniques
which offer online fault tolerance, i.e. the techniques which
are able to deal with failures which occur after a chip has left
the factory. We present these techniques in order of increasing
complexity.

A first category of algorithms employ face routing based
techniques to find paths around areas with faulty components.
Maze routing is an important example of these techniques
[8]. An important advantage of such methods is that recent
information on the status of each link/node is required only
by its neighbouring nodes, thus resulting in a low recon-
figuration overhead. Furthermore, these methods provide full
fault coverage: a route will be found whenever a path from a
source node to its destination exists. The main disadvantage
is that these methods are limited to planar graph topologies
and cannot easily be extended to other topologies, such as
3D NoCs, wireless NoCs or a torus topology. Additionally,
when a packet encounters an area with faulty components, the
lack of information on the shape of this area may result in
the message being routed along the border in a suboptimal
direction, thus significantly increasing the path length.

Another important technique uses fault regions [9]. This
method applies to n-dimensional mesh networks, in which one
or multiple faults are grouped in one or more rectangular non-
overlapping regions. When encountering such a region, the
protocol routes along the border of the fault region. The main
issue with this technique is that the rectangular fault regions
typically contain some healthy nodes as well. The healthy
nodes on the inside of a fault region such a cannot receive
messages and thus must be turned off, which results in a bad
resource utilization.

Other authors extended this method by proposing to com-
bine the fault regions with extra information regarding the con-
nectivity of the neighbourhood of a router [10]. As routers take
into account component information of nodes at an increasing
hop distance, fault regions of increasingly complicated shapes
are allowed. However, increasing the hop distance also results
in a more complex forwarding process and exchanging this
information increases the communication overhead.

As the hop distance within which local information is
exchanged increases, nodes start to exchange information
on the full graph topology. Such methods guarantee full
fault coverage without making any assumptions on the graph
structure. Hence this category of algorithms is topology-
agnostic. Sharing this connectivity information results in a
large communication overhead and long reconfiguration times.
Additionally, the routing information is usually stored in
a routing table, increasing the hardware complexity of the
routing module. Packet switching routing algorithms, such as
link state routing and distance vector routing, are part of this
category.

A subcategory of routing schemes in which the full graph
topology is processed employs spanning trees to ensure that
the routing process remains deadlock free. An overview of
these methods is given by [11]. The fundamental algorithm
in this category is up*/down* routing [12]. In this method, a
spanning tree is constructed over the network, and the ‘up’
or ‘down’ direction is assigned to each arc in the network
(including the ones that are not part of the spanning tree). The
directions are assigned in such a way that there is no cycle
containing exclusively ‘up’ or exclusively ‘down’ arcs. To
guarantee deadlock freeness, shortest paths between a source
and destination vertex are searched under the restriction that
no up edge can follow after a down edge (i.e. the ‘down-up’
turn is forbidden). These path constraints were relaxed in [13],
which uses uses a more fine grained categorization of edges,
in which only few specific turns are prohibited.

Also related to this are several publications on deadlock
free routing using multiple up*/down* trees [14]–[16]. Each of
the trees has its own separate root, and corresponds a so-called
‘network-layer’. These methods require virtual channels: since
routing in each of the trees is deadlock free, the multi-tree
algorithm is guaranteed to be deadlock free when no more
trees are concurrently in use than the number of available
virtual channels.

III. DEADLOCK FREE MULTI-TREE GEOMETRIC ROUTING

This section explains the workings of our deadlock free
multi-tree geometric routing in a general network setting.

A. Single-tree geometric routing

Geometric routing protocols operate by assigning coordi-
nates to each of the nodes in a network, and require that
sending nodes specify the coordinates of the receiver in their
transmitted messages. These coordinates are subsequently used
in the forwarding process to route packets to their destination
without requiring a route discovery step. When routing in a



2D NoC mesh network, including the physical coordinates
(i.e. the position of a node in the raster) is a common idea.
NoC algorithms such as dynamic XY routing [17] and the
(odd-even) turn model [18], [19] forward packets towards the
neighbour for which the Manhattan distance to the destina-
tion is minimal, whilst taking into account some additional
restrictions to guarantee the deadlock freeness of the routing
scheme.

Unfortunately, greedy based routing using the Manhattan
distance between the physical raster coordinates of nodes may,
in the presence of faults, suffer from so called ‘local minima’,
i.e. nodes for which the Manhattan distance between each of
their neighbours and the destination exceeds the Manhattan
distance between themselves and the target location. Such
local minima may cause packets to get stuck. Greedy em-
beddings work around this problem by assigning to each node
a virtual coordinate, over which a distance function is defined
in such a way that no local minima exist.

Our algorithm uses a tree-based embedding, in which coor-
dinates are assigned based on a breadth-first search spanning
tree, which consists of a subset of all bidirectional links in
the network. The address of a node uniquely identifies the
position of a node in the tree: each node assigns to each of its
outgoing arcs a locally unique identifier, and the address of a
node n corresponds to the identifiers of the edges on the path
between the root and n. As an example, a spanning tree for
a fault-free 4x4 mesh and the corresponding tree coordinates
are illustrated in Fig. 1.

Fig. 1. Example spanning tree for a fault-free 4x4 mesh network. The
identifiers assigned to the arcs correspond to their compass direction.

Algorithms to set up such a spanning tree in a fully
distributed manner have been studied in the literature. In [20],
a distributed spanning tree algorithm is presented in which
all communication is between neighbouring nodes. At any
moment during the algorithm, nodes only need to store the
id corresponding to the root of the tree, and their own address
within that tree. The algorithm guarantees that the node with
the highest id becomes the root of the tree. Since the location
of the root node is preferably as central as possible, the node
ids could be preprogrammed such that centrally located nodes
have higher ids.

These addresses allow to calculate the distance between
any pair of nodes (n1, n2) when travelling along the tree:

starting from n1, such a path travels upwards along the tree
to the last shared ancestor of the two nodes and then heads
downwards towards n2. Assume that the address of n1 is
(e1,1, e1,2, ..., e1,I), the address of n2 is (e2,1, e2,2, ..., e2,J)
and the last shared ancestor of n1 and n2 is reached via the
last shared edge e1,K = e2,K of the two addresses. In this case
the length of the path between n1 and n2 equals I + J − 2K.
Thus, the ‘tree distance’ between any pair of nodes can be
calculated by searching for the position of the last shared edge
in their addresses.

Fig. 2 shows, for the network of Fig. 1, the distance between
each node and the node with address WN. For each node, all
possible neighbours to which a message addressed to node WN
may be forwarded are indicated. Note that greedy routing is
different from routing along the tree: greedy routing allows to
use connections which are not part of the tree if they decrease
the distance towards the destination.

Fig. 2. Example spanning tree and forwarding directions for routing towards
the ‘WN’ node in a fault-free 4x4 mesh network

B. Deadlock freeness

In order to guarantee the deadlock freeness of the routing
algorithm, some additional forwarding restrictions/rules must
be taken into account in each node through which a packet
passes. Our approach is as follows: each bidirectional con-
nection (edge) in the network is assumed to be implemented
as two separate channels (arcs) with opposite directions. We
categorize each channel according to the depth of its start and
end node within the spanning tree and subsequently, deadlocks
are avoided by placing restrictions on which arc types can be
taken in each of the nodes.

Consider a general network topology over which a spanning
tree has been constructed. Each node n in this network has a
depth d(n) corresponding to the length of the path between
the root of the tree and n when travelling along the tree. Based
on this depth, a connection starting at a node n1 and ending
at a node n2 must be of one of the following types:

• d(n2) < d(n1): the connection is upwards (↑)
• d(n2) = d(n1): the connection is sideways (→)
• d(n2) > d(n1): the connection is downwards (↓)
Deadlock freeness is achieved by restricting each path such

that it consists of an initial sequence of edges which are either
upwards or sideways, followed by a sequence of edges that are



all downwards. Otherwise stated: for any path, the sequence
of path types corresponding to the edges along the path is a
string of the format: (↑ | →)∗ ↓ ∗.

Deadlock may occur only if there exists a cycle in the graph
such that for any two subsequent arcs a1 and a2 in the cycle,
we have that a1 is dependent on a2, i.e. any two subsequent
arcs in the cycle must be part of some path along which a
message may be routed.

Any cycle which contains an upwards arc must also contain
a downwards arc (and vice versa). Thus, at some position
in such a cycle a downwards channel must be followed by
either a sideways or an upwards arc. This however implies
that some packet must travel along a downward arc, followed
by a sideways or an upwards arc, which is in contradiction
with our restriction on the shape of a path. Hence, no cycle
can contain any upwards or downwards arcs. This is similar
to the reason why there are no cycles in up*/down* routing.

The only remaining cycles which may cause a deadlock
are composed exclusively of sideways connections. However,
for a packet which is routed over two sideways connections
we consider the corresponding nodes n1, n2 and n3 through
which the packet passes. Since the distance between these
nodes and the target of the packet decreases, but the length of
the addresses of the nodes remains the same, the depth of the
last shared ancestor between each of the nodes and the target
node must increase. Also, the last shared ancestor between
n1 and n2 is at the same depth as the last shared ancestor
between n1 and the target of the packet and similarly, the last
shared ancestor between n2 and n3 is at the same depth as the
last shared ancestor between n2 and the target of the packet.
Hence, the depth of the last shared ancestor between n2 and
n3 exceeds the depth of the last shared ancestor between n1
and n2. However, the nodes n2 and n3 are once again the
first nodes of another sequence of two sideways connections,
where the depth of the last shared ancestor between the last
pair of nodes will exceed the depth of the last shared ancestor
between n2 and n3. Hence, the depth of the last shared
ancestor between any two subsequent nodes keeps increasing
whilst travelling along the cycle. However, since this is a cycle,
the same two subsequent nodes will eventually occur again,
which is in contradiction with the increasing depth of the last
shared ancestor.

We conclude that enforcing that paths consisting of an initial
sequence of edges which are either upwards or sideways,
followed by a sequence of edges that are all downwards are
indeed deadlock free. This restriction is easily achieved by
allowing the use of downwards arcs only if the node at the
end of the arc is an ancestor of the target node.

C. Fault tolerance

Tree-based embeddings have some intrinsic properties
which are advantageous when dealing with run-time faults.
Regarding link faults, reconfiguration is necessary only when
a connection breaks which is part of the spanning tree. Also,
non-tree links may remain in use even if one channel of the
link fails, turning it into an unidirectional connection. Node

failures typically require to reconfigure the tree, unless the
failing node is a leaf node (since in that case no part of
the tree becomes disconnected). This property may also be
used in power-gating techniques [5]: leaf nodes or even entire
subtrees can be switched off without requiring to reconfigure
the algorithm.

D. Multi-tree geometric routing

Single tree geometric routing may suffer in some cases
from a discrepancy between the connectivity of nodes in the
spanning tree and the connectivity of nodes in the full topology
graph. This may cause a large tree distance between nodes
which are physically located close to each other. This in turn
may lead to suboptimal pathfinding. For example, in Fig. 1,
when routing a packet from NN to WWNN it will be routed via
the nodes with coordinates N, ε, W, WW, WWN and WWNN.
(Note that the link between NN and WNN and between N and
WN may not be used due to the deadlock avoidance rule.)

This issue may be alleviated by using multiple spanning
breadth-first trees for addressing. These trees should be con-
structed in such a way that nodes that are physically located
close to each other but far from each other in one tree are close
to each other in the other one. Fig. 3 shows an alternative tree
for a fault free 4x4 network. Note that the NN and NNWW
nodes, which were at a tree distance of 6 in Fig. 1 are now at
a tree distance of 2.

Fig. 3. Example spanning tree for a fault-free 4x4 mesh network. The
identifiers assigned to the arcs correspond to their compass direction.

In this multi-tree algorithm, a packet is forwarded towards
the neighbour for which the tree distance from the destination
in any of the trees is minimized.

In order to guarantee deadlock freeness, all trees must
be rooted in the same node: since these spanning trees are
breadth-first trees, this ensures that the depth of a node in any
of the trees is the same. The same path restriction rule that was
introduced in subsection III-B can thus be applied in the multi-
tree case. Similarly as before, one can argue that cycles cannot
contain any upwards or a downwards arcs. Unfortunately, this
is not the case for the argument regarding cycles consisting of
sideways arcs, which holds only when routing in a single tree.
We work around this issue by modifying the distance function,
such that for sideways links the distance is always calculated
over the same tree.



Regarding fault tolerance, it is worthwhile to notice that the
multi-tree algorithm can also be successfully combined with
power-gating techniques: nodes which are at the maximum
depth are always leaf nodes in both trees and can be switched
off without requiring to reconfigure the algorithm.

IV. DEADLOCK FREE MULTI-TREE GEOMETRIC ROUTING
IN (HIERARCHICAL) GRID NETWORKS

Grid based topologies are one of the most common network-
on-chip topologies [21]. This section discusses some optimiza-
tions of the previously discussed multi-tree routing algorithm
for these (hierarchical) grids.

A. Neighbour selection heuristic

Multi-tree routers operate by randomly forwarding a mes-
sage towards any of the nodes which are at a minimal tree
distance from the destination. In the case of mesh networks,
an additional heuristic is applied: for all neighbours which
are at a minimal tree distance from the destination, the
Manhattan distance to the destination is calculated as well. Of
the neighbours with a minimal tree distance, a random node
for which the Manhattan distance is minimized is selected.

B. Tree growing algorithm

The multi-tree algorithms require to construct multiple
breadth-first spanning trees rooted in the same node, such that
nodes which are physically located in proximity to each other
also have a low tree distance. We aim to achieve this target
using direction-preferential tree growth: whenever a node at
depth d is connected to multiple nodes at depth d−1, the parent
is picked based on the direction of the edge from that parent.
Fig. 1 presents such a tree for a 4x4 mesh, with a preference
for north-south connections over east-west connection. Fig. 3
shows a tree with a preference for connections in the east-west
direction.

C. Address compression

In wormhole routing, each packet is broken into several
flits (flow control units). The header flit is processed by
the router and should contain all routing information. When
using multiple trees, the address of the target in each of the
trees should be stored in the header flit. Using a full path
representation (e.g. 2 bits per edge in a 2-dimensional flat grid)
may easily result in address sizes which exceed the length of
a flit, especially since introducing errors might increase the
network radius, resulting in longer addresses.

This issue can be mitigated by exploiting the highly regular
tree structure which is typical for direction-preferential trees.
The addresses assigned by these trees typically contain many
consecutive occurrences of arcs in the same direction. This
allows to apply run-length encoding, in which each sequence
of edges in the same direction is replaced by the direction
of the edge and the number of occurrences. For example, an
address NNNNEEEEEEN would be encoded as N4E6N1.

V. PERFORMANCE EVALUATION

This section employs graph-based simulations of 2D mesh
network topologies to evaluate our algorithm with regard to
several quality metrics. Two variants of the proposed deadlock
free greedy routing algorithm were studied: one variant using
a single direction-preferential tree, and one variant using two
of these trees. Both variants their performance was evaluated
both in 4x4 and 8x8 mesh networks for a varying probability
of random link failures. In all subsequent figures, every
measurement point is calculated over at least 250 000 source-
destination pairs.

Firstly, the quality of the routes was evaluated. For this
purpose the mean stretch was calculated: for any source-
destination query, the stretch equals the average path length
of the routes provided by the algorithm divided by the length
of the shortest path between the source and destination. The
mean stretch is visualised in Fig. 4. All algorithms provide
low average stretch values (below 1.14). Unsurprisingly, the
multi-tree algorithms outperform the single tree algorithms in
all cases. Note that in the case of no failures, the multi-tree
algorithm always returns a minimal route. We also observe that
routing in the less complex 4x4 mesh results in smaller stretch
values than routing within the larger 8x8 mesh. Increasing the
link failure probability results in an increased mean stretch.

Fig. 4. Mean stretch for routing using 1 or 2 trees, in a 4x4 or 8x8 mesh
network

Similar results are observed when the fraction of source-
destination pairs for which the returned route is always mini-
mal is visualised. For more than 75% of source-destination
pairs the algorithm always returns paths with an optimal
length. These results are shown in Fig. 5.

Lastly, we evaluate the adaptiveness of the routing algorithm
from a graph-based perspective. Provided a source-destination
pair for which the routing algorithm exclusively finds paths
with a minimal length, the degree of adaptiveness is defined
as the number of legal routes which may be returned by the
algorithm, divided by the number of minimal length paths
in the graph [22]. The average degree of adaptiveness for
various setting is shown in Fig. 6. Once again, we see that
a better adaptiveness is achieved when routing in a 4x4
mesh in comparison to the 8x8 mesh, and using a multi-tree
algorithm improves the adaptiveness. As the occurrence of



Fig. 5. Fraction of source-destination pairs for which the chosen route is
non-minimal, using 1 or 2 trees, in a 4x4 or 8x8 mesh network

failures increases, and the number of minimal length paths
drops, the results of our algorithm improve.

Fig. 6. Average degree of adaptiveness for minimal length routes, using 1 or
2 trees, in a 4x4 or 8x8 mesh network

VI. CONCLUSION

We introduced a topology-agnostic, fault tolerant, greedy,
tree-based routing algorithm for networks-on-chip. The al-
gorithm is fully distributed, and we have proven that it is
deadlock free, without requiring any virtual channels. Practical
guidelines and optimisations for deploying the algorithm in
a (hierarchical) grid network were provided. We executed
simulations in 8x8 and 4x4 mesh network topologies to
evaluate the quality of the provided routes and found that the
generated routes were optimal for over 75% of the source-
destination pairs. The average ratio of the length of a generated
path versus the length of a minimal path is below 1.14.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip inter-
connection networks,” in Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232), June 2001, pp. 684–689.

[2] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “Software-
based online detection of hardware defects mechanisms, architectural
support, and evaluation,” in 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 2007), Dec 2007, pp. 97–108.

[3] S. Abadal, C. Liaskos, A. Tsioliaridou, S. Ioannidis, A. Pitsillides,
J. Sol-Pareta, E. Alarcn, and A. Cabellos-Aparicio, “Computing and
communications for the software-defined metamaterial paradigm: A
context analysis,” IEEE Access, vol. 5, pp. 6225–6235, 2017.

[4] E. Cota, A. Amory, and M. Lubaszewski, Reliability, Availability and
Serviceability of Networks-on-Chip. Boston, MA, USA: Springer US,
2012.

[5] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for effective
power-gating of on-chip routers,” in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2012, pp. 270–281.

[6] J. Murray, R. Kim, P. Wettin, P. P. Pande, and B. Shirazi, “Performance
evaluation of congestion-aware routing with dvfs on a millimeter-wave
small-world wireless noc,” J. Emerg. Technol. Comput. Syst., vol. 11,
no. 2, pp. 17:1–17:22, Nov. 2014.

[7] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in networks-on-chip,” ACM Computing Surveys, vol. 46, no. 1,
pp. 8:1–8:38, Oct. 2013.

[8] M. Fattah, A. Airola, R. Ausavarungnirun, N. Mirzaei, P. Liljeberg,
J. Plosila, S. Mohammadi, T. Pahikkala, O. Mutlu, and H. Tenhunen, “A
low-overhead, fully-distributed, guaranteed-delivery routing algorithm
for faulty network-on-chips,” in Proceedings of the 9th International
Symposium on Networks-on-Chip, ser. NOCS ’15. New York, NY,
USA: ACM, 2015, pp. 18:1–18:8.

[9] Y. Fukushima, M. Fukushi, and S. Horiguchi, “Fault-tolerant routing
algorithm for network on chip without virtual channels,” in 2009 24th
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, Oct 2009, pp. 313–321.

[10] S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda, “A new deadlock-
free fault-tolerant routing algorithm for noc interconnections,” in 2009
International Conference on Field Programmable Logic and Applica-
tions, Aug 2009, pp. 326–331.

[11] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato,
M. Koibuchi, T. Rokicki, and J. C. Sancho, “A survey and evaluation of
topology-agnostic deterministic routing algorithms,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 3, pp. 405–425, March
2012.

[12] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham,
T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker, “Autonet:
a high-speed, self-configuring local area network using point-to-point
links,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 8,
pp. 1318–1335, Oct 1991.

[13] A. Jouraku, M. Koibuchi, and H. Amano, “An effective design of
deadlock-free routing algorithms based on 2d turn model for irregular
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 3, pp. 320–333, March 2007.

[14] O. Lysne, T. Skeie, S. . Reinemo, and I. Theiss, “Layered routing
in irregular networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 1, pp. 51–65, Jan 2006.

[15] J. Flich, P. López, J. C. Sancho, A. Robles, and J. Duato, “Improv-
ing infiniband routing through multiple virtual networks,” in High
Performance Computing, H. P. Zima, K. Joe, M. Sato, Y. Seo, and
M. Shimasaki, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 49–63.

[16] I. Theiss and O. Lysne, “Froots – fault handling in up*/down* routed
networks with multiple roots,” in High Performance Computing - HiPC
2003, T. M. Pinkston and V. K. Prasanna, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 106–117.

[17] M. Li, Q.-A. Zeng, and W.-B. Jone, “Dyxy - a proximity congestion-
aware deadlock-free dynamic routing method for network on chip,” in
2006 43rd ACM/IEEE Design Automation Conference, July 2006, pp.
849–852.

[18] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,”
in [1992] Proceedings the 19th Annual International Symposium on
Computer Architecture, May 1992, pp. 278–287.

[19] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp.
729–738, July 2000.

[20] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester, “Link
failure recovery technique for greedy routing in the hyperbolic plane,”
Computer Communications, vol. 36, no. 6, pp. 698 – 707, 2013, reliable
Network-based Services.

[21] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, Jun. 2006.

[22] V. Catania, R. Holsmark, S. Kumar, and M. Palesi, “A methodology
for design of application specific deadlock-free routing algorithms for
noc systems,” in Proceedings of the 4th International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS ’06),
Oct 2006, pp. 142–147.


